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1. INTRODUCTION

A new version of the fast multipole method (FMM) for the evaluation of potential fielc
in three dimensions was introduced in [17]. The scheme evaluates all pairwise interac
in large ensembles of particles, i.e., expressions of the form

n
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(X)) = ; X% @
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for the gravitational or electrostatic potential and

n
Xi — Xi
EXD=> 6 s )
’ ; X = X3
i#]
for the field, whereXq, X,, ..., X, are points inRk3 andq, O, . . ., Oy are a set of (real)

coefficients.

The evaluation of expressions of the form (1) is closely related to a number of impor
problems in applied mathematics, physics, chemistry, and biology. These include mole
dynamics and quantum-mechanical simulations in chemistry, the evolution of large-s
gravitational systems in astrophysics, capacitance and inductance calculations in elec
engineering, and incompressible fluid dynamics (see, for example, [1, 3, 6, 26, 27, !
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When certain closely related interactions are considered as well, involving expressiol
the form

gkIX; =Xl
(X)) = qu X =X ®3)
27

the list of applications becomes even more extensive.

Ever since its introduction in the 1980s, the FMM has been capable of producing \
high accuracy for an acceptable cost in two dimensions; in three dimensions, it has
considerably less efficient, except when the accuracy requirements were low. This situ
changed somewhat with the development of a new version of the FMM in [17], whict
highly efficient over a wide range of accuracies. That paper introduced a rather invo
mathematical apparatus and described the algorithm in its simplest, nonadaptive forr

Needless to say, most charge distributions encountered in applications are highly no
form, and to be robust, a procedure for the evaluation of sums of the form (1) or
has to be adaptive. In this paper, we introduce such a scheme, applicable to all dist
tions of particles that are likely to be encountered in practice. An additional improven
introduced in this paper is a “compressed” version of the translation operators used b
FMM procedure, which is the principal reason for the improvement of the timings founc
Section 5 below over those in [17].

The paper is organized as follows. In Section 2, we summarize the mathematical
numerical facts to be used in subsequent sections. In Section 3, we review the anal;
apparatus to be used in the design of the improved version of the FMM. In Section 4
describe the adaptive version of the FMM and make some comparisons with tree code
Section 5, we illustrate the performance of the method with several numerical exam
Finally, Section 6 discusses several possible generalizations. For a review of FMM-
methods and a more thorough discussion of the literature, we refer the reader to [17
to the recent papers [22, 28].

2. MATHEMATICAL PRELIMINARIES

In this section, we review the analytical tools used in the design of the FMM algoritt
For a detailed discussion, see [14, 17, 21, 23, 33].

We begin by defining the spherical harmonics of degre@d ordemm according to the
formula

(n—mp!

o 0- 0=\ [ s

- PI™(cos)e™?. 4

Here, the special functior3" are the associated Legendre functions, which can be defir
by Rodrigues’ formula

PM(x) = (=)™ — x3)™2_— d”

S P00,

whereP,(x) denotes the Legendre polynomial of degnee
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THEOREM 2.1 (Multipole expansion). Suppose that N charges of strengthsag, . . .,
gn are located at points X Xo, ..., Xy with spherical coordinates(p;, o1, 81),
(p2, 2, B2), - - ., (PN, @N, BN), respectively. Suppose further that the points Xo, .. .,
Xn are located inside a sphere of radius a centered at the origin. Tfegnany point
X =(r, 6, ¢) € R®withr > a, the potentialb (X), generated by the charges.p. . . ., On,
is given by the formula

[ee] n Mm
0= > fmix W9, ©
n=0 m=-n
where
N
Mrr_lnzqu IOInYn_m(al’ﬂl) (6)

i=1
Furthermore for any p> 1,

p n
®(X)——j£: j{:

n=0 m=-n
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The preceding theorem describes an efficient representation of the far field due
collection of sources. Within the FMM, it is also useful to be able to describe the fit
locally when the charges themselves are far away.

THEOREM 2.2 (Local expansion). Suppose that N charges of strengthsag, .. ., On
are located at the points XX, ..., Xy In R with spherical coordinates$p;, a1, 1),
(02, az, B2), ..., (o, an, BN), respectively. Suppose further thatall the poings Xo, . . .,
Xy are located outside the spherg 8f radius a centered at the origin. Thefor any
point Xe S, with coordinates(r, 9, ¢), the potential®(X) generated by the charges

01, 92, - . ., On is described by the local expansion
©
O(X)=> Y LK Yf@O.9) 1], (®)
j=0 k=—]
where
N —k
Y (o, Br)
=20~ ©
1=1 |

Furthermore for any p> 1,

pi
@ (X) —Z Z LY Y{@©. ¢) - r1Ft

j=0k=—]j

< (%) (ra) " (10)

The FMM relies on the ability to translate multipole and local expansions. The relev
translation operators are described in the next three theorems [14, 16].

2.1. Translation Operators
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THEOREM 2.3 (Translation of a multipole expansion)Suppose that N charges of
strengths g, gy, ..., gn are located inside the sphere D of radius a centered gt=X
(p,a, B). Suppose further that for any point=X(r, 6, ) € R*\D, the potential due to
these charges is given by the multipole expansion

D(X) = Z Z ,n+1 YO, ¢, (11)

n=0 m_fn

where(r’, 6', ¢') are the spherical coordinates of the vector-XXg.
Then for any point X= (r, 6, ¢) outside a sphere Dof radius(a+ p) centered at the
origin,

P(X) = ZZ Y. ). (12)
j=0k=—]j
where
n M jKi=mi—lk=ml =AM AK-M _on y-m(y g

i
zz n AR e )
n=0 m=—

J

with AT defined by the formula

Am _ (_l)n
" Jim—ml - n+myl

(14)

Furthermore for any p> 1,

N_ i + P+l
von-32 3 Shovton) < (ZR05) (412)7 e

j= Ok—*l

DerINITION 2.1.  Formula (13) defines a linear operator converting the multipole exp:
sion coefﬁcients{olk} into the multipole expansion coeﬁicier{lm}(}. This linear mapping
will be denoted byZy v -

THEOREMZ2.4 (Conversion of a multipole expansion to a local expansio8uppose that
N charges of strengthg gy, . . ., qn are located inside the spherexpof radius a centered
at the point X% = (p, «, 8), and thatp > (c+ 1)a for some ¢ 1. Then the corresponding
multipole expansioill) converges inside the spherg Bf radius a centered at the origin.
Furthermore for any point Xe Dy with coordinates(r, 6, ¢), the potential due to the

charges g, 0o, . . ., O is described by the local expansion
S j .
®(X) = Z Z LK YE@©. ¢) -1, (16)
j=0 k=—]
where

n Om I\k m|—|k|—|m]| | Am Ak ym- k(Ol,,B)

oo
k _ J+n
L] - Z ( 1)n A?’I+HK p]+n+l ’ (17)




472 CHENG, GREENGARD, AND ROKHLIN

with AT defined by(14). Furthermore for any p>1,

Y lal) (1)
= ( caia ) (E) ' (18)

DerINITION 2.2.  Formula (17) defines a linear operator converting the multipole exp:
sion coefficientq O}‘} into the local expansion coefficien{tls'j‘}. This linear mapping will
be denoted by .

P
O(X) =Y > LAY, ) 11T

=0 k=]

THEOREM 2.5 (Translation of a local expansion)Suppose that g X are a pair of
points in R? with spherical coordinatesp, a, B), (r, 6, ¢), respectivelyand (r’, ', ¢’)
are the spherical coordinates of the vector-XXy and p is a natural number. Letpbe
the center of a pth-order local expansion with p finite expression at the point X is given
by the formula

p n
OX) = > ON-Y@.¢)-r" (19)
n=0 m=-n
Then
P
O(X)=> Y LK Yf@O.9) 1], (20)
j=0 k=]

everywhere irR®, with

n_oom.jlmi-im-ki-ik . Anm:jk . Alj< . Y,?l_jk(a, B) - p"
(=Dn+i . AM ’

(21)

p
=3
n=j m

=—n

and A are defined by14).

DeriNITION 2.3.  Formula (21) defines a linear operator converting the local expans
coefficients{O]l"} into the local expansion coefficients['}. This linear mapping will be
denoted by7| | .

Remark 2.1. The matrices representing the linear operatis, 7w, and7, . are
dense, so that applying them to truncated expansions@fit) coefficients cost© (p*)
operations. This is one of the principal reasons for the relatively high CPU time requ
ments of most existing FMM implementations in three dimensions. Section 3 of this pe
provides tools for the rapid application of the operaf@is, 7mL, 7L to arbitrary vectors,
improving the efficiency of FMM algorithms significantly.

2.2. Rotation Operators

Inthis subsection, we introduce operators which transform multipole and local expans
under rotations of the coordinate system. These operators will play a role in Section 3.
basic results are contained in the next two theorems, whose proofs can be found ir
together with formulae for the evaluation of the coefficieRIE™ in (22), (23).
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THEOREMZ2.6 (Rotation of multipole expansions)Suppose thae;, e;, e3) are the three
standard orthonormal basis vectorsitt, given by the formulae

el = (1’ 07 O)?
e =010,
es=(0,0,1),

and (w1, wy, w3) are three other orthonormal vectors &r, forming another basis.
Suppose further that a harmonic functién: R®\{0} — R is defined by the formula

p n m
200 =33 T v, ),

n=0 m=-n

with (r, 6, ¢) the spherical coordinates of the point X R® associated with the basis
(e1, &, 63). Thenthere exist coef“ficients{}l'\’W withn=0,1,...,pm=—n,....,n,m =
—n, ..., n, such that for any X R?,

p n Mm’
e =D D> i Yo @ ¢,
n=0 mM=-n

where(r, 0, ¢’) are spherical coordinates of X in the system of coordinates associated v
the basiSw1, w», w3), and

n
M= 3 R M, (22)
m=—n
foraln=0,1,...,p,m =—n,...,Nn.

THEOREM 2.7 (Rotation of local expansions)Under the conditions of Theorefh6,
suppose that a harmonic functidn: R® — R is defined by the formula

p

X)) = Y LI-r™Ye, ¢),

n=0 m=-n

where(r, 6, ¢) are the spherical coordinates of the pointeXR® associated with the basis
(e1, &, &3). Then for any Xe R3,

p n
o)=Y Y Ly -rYre, ),
n=0m'=-n

where(r, 0, ¢’) are spherical coordinates of X in the system of coordinates associated v
the basiSw1, wy, w3), and

n
Ch = > RM™™.LM, (23)
m=—n

foralln=0,1,..., p,m= —n,...,n. Furthermorethe coefficients R™ are the same
asin(22).
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DEFINITION 2.4. Given a rotatio2 : R® — R3, formulae (22), (23) define operators
converting the multipole coefficien{sv["} into the multipole coeﬁicient$h7|nm} and the
local coefficient L'} into the local coefﬁcients{;[nm}, respectively. These two operators
are identical, and will be denoted R/(2).

Remark 2.2. Aninspection of formulae (22), (23) shows immediately that the numeric
evaluation of the operatd® () requiresO(p®) operations.

2.3. Exponential Representation

The new generation of FMMs is based on a combination of multipole expansions
exponential or “plane wave” expansions. Given a source goiat(Xg, Yo, Zo) and a target
locationQ = (X, Yy, 2), with z> zg andr = || P — Q]|, we begin with the formula [24]

1 1 oo 2n .
[ — e—)\(z—zo)/ g M(x=xo) cosa+(y—Yo) sine) o . (24)
r 21 0 0

We will construct approximations to the integral in (24) via appropriately chosen quadra
formulae. These quadratures are investigated in detail in [35]; in the following lemma,
simply state the result for three special cases, corresponding to three-digit, six-digit,
nine-digit accuracy.

LEMMA 2.8 ([35,17]) Suppose that g& (Xo, Yo, Zo), X = (X, Y, 2) are a pair of points
in R% and thatr= || X — Xo|. Suppose further that the coordinates— Xo, Y — Yo, Z— Zp)
of the vector X— X satisfy the conditions

1<2-2<4,0<V(X—X0)2+ (Y — Yo)? < 4V2. (25)
Then
1 8 w3 MS 3 i 3 i 3
LSS g e oot oowsieh]| <1610, (26)
k=1 K j=1
1 17 w6 ME 6 i 6 i 6
==Y sy ekl edd) vl <1310, (27)
k=1 K j=1
1 26 w9 ME 9 i 9 o9
L3 My ettt o) < 115100, (28)
k=1 K j=1

wherea?, = 27j/M$, a®y = 27j /Mg, o = 27j/M{. The weightgw?, 1 = 1,..., 8},
wh 1 =1,...,17), (w.1 = 1,...,26}, thenoder? | =1,....8}, (36,1 =1,...,17),
(A, 1=1,...,26}, and the integer arrays{M2 k=1,...,8}, (M8 k=1,...,17},

(M2, k=1, ..., 26} are given in Tabled4, 15, 160f the Appendixespectively.

Remark 2.3. The conditions (25) in the preceding Lemma appear to be rather spec
They are, however, related to the geometric refinement of space introduced by the F
and their use will become clear in the next section.



ADAPTIVE FMM ALGORITHM 475

Remark 2.4. When the desired precision is clear from the context, we will simplify tf
notation used in Lemma 2.8, writing each of the expressions (26), (27), (28) in the forr

1 s(e) My

c- 3 % Y e gl oty o) sl | < g (29)
Kk <
k=1 j=1

where the integers(e) and the tripletd My, wk, Ax| k=1, ..., s(¢)} all depend orz, and
o k= 2 /M. The total number of exponential basis functions used in (29) will be deno

by

s(e)
Sp= D M. (30)
k=1

3. DATA STRUCTURES AND FAST TRANSLATION OPERATORS

In order to develop a fast algorithm, we first define the computational domain to be
smallest cube ifiR? containing all sources. We then build a hierarchy of boxes, refinil
the computational domain into smaller and smaller regions. At refinement level 0, we |
a single box corresponding to the entire computational domain. Refinement feteis
obtained recursively from levélby the subdivision of each box into eight cubic boxes ¢
equal size. In the nonadaptive case, this recursive process is halted after rougiy Ic
levels, whereN is the total number of sources under consideration.

DerINITION 3.1. A boxc is said to be &hild of boxb, if box c is obtained by a single
subdivision of boxb. Box b is said to be th@arentof boxc.

DEFINITION 3.2. Two boxes are said to lselleaguesf they are at the same refinement
level and share a boundary point. (A box is considered to be a colleague of itself.) Th
of colleagues of a bol will be denoted byColl(b).

DerFINITION 3.3.  Two boxes are said to beell separatedf they are at the same refine-
ment level and are not colleagues.

DerFINITION 3.4. With each box is associated amteraction list consisting of the
children of the colleagues tfs parent which are well separated from Hdoi=ig. 1).

Note that a box can have up to 27 colleagues and that its interaction list contains
189 boxes. Figure 1 depicts the colleagues and interaction list of a box in a two-dimensi
setting.

The interaction list for each box will be further subdivided into six lists, associated w
the six coordinate directiongz, —z, +y, —Yy, +X, —X) inthe three dimensional coordinate
system. We will refer to the-z-direction as up, the-z-direction as down, the-y-direction
as north, the-y-direction as south, the x-direction as east, and thex-direction as west.

DErFINITION 3.5 (Directional lists).

The Uplist for a boxb consists of those elements of the interaction list which lie abo
b and are separated by at least one box irHtaelirection (Fig. 2).

TheDownlistfor a boxb consists of those elements of the interaction list which lie belo
b and are separated by at least one box inthelirection.
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FIG. 1. The colleagues of a (two-dimensional) boare darkly shaded, while its interaction list is indicated
in white. In three dimensions, a biwhas up to 27 colleagues and its interaction list contains up to 189 boxes.

TheNorthlistfor a boxb consists of those elements of the interaction list which lie nor
of b, are separated by at least one box in-thedirection, and are not contained in the Ur
or Down lists.

The Southlistfor a boxb consists of those elements of the interaction list which lie sou
of b, are separated by at least one box inthedirection, and are not contained in the Ur
or Down lists.

The Eastlistfor a boxb consists of those elements of the interaction list which lie ea
of b, are separated by at least one box in-+thedirection, and are not contained in the Up
Down, North, or South lists.

The Westlistfor a boxb consists of those elements of the interaction list which lie we
of b, are separated by at least one box in-thedirection, and are not contained in the Up
Down, North, or South lists.

For any boxb, we will denote the number of elements in its UplistiiyUplist(b)), and
adopt a similar convention for each of the remaining five lists.

Remark 3.1. Itis easy to verify that the original interaction list is equal to the union
the Up, Down, North, South, East, and West lists. It is also easy to verify for two oxes

FIG. 2. The Uplist for the bo (see Definition 3.5).
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that

¢ € Uplist(b) < b € Downlist(c),
¢ € Northlist(b) < b € Southlistc), (31)
¢ € Eastlistb) & b € Westlistc).
Furthermore, suppose that two boxeandc are of unit volume and that € Uplist(b).

Then for any pointXy = (X0, Yo, Z0) € b and any pointX =(x, Yy, z) € c, the vector
X — Xo= (X — Xo, Y — Yo, Z — Zo) satisfies the inequality

1<72-2<40<V(X—Xx)2+(y—Yy)? <42 (32)
Note that this is precisely the condition (25) in Lemma 2.8.

Remark 3.2. When there is no danger of confusion, we will Wsglist(b) to refer to the
geometrical region defined by the union of all boxes in the Uplist ofthokis is a slight
abuse of notation, sindgplist(b) is, strictly speaking, aetof boxes. We will take the same
liberty with Downlist(b), Northlist(b), Southlistb), Eastlisib), Westlistb) andColl(b).

3.1. Rotation Based Translation Operators

In this section, we describe a simple scheme for reducing the cost of applying any o
three operatorym, ZmL, 7L to an arbitrary vector from® (p*) to O(p?), operations. The
scheme is based on the observation that when a multipole or local expansion is trans
along thez-axis, the cost is reduced fro@(p*) to O(p3) [9, 17, 19, 34]. The following
lemma is obtained immediately from the resulting simplification of formulae (13), (1
and (21).

LEMMA 3.1. If,in Theorem®.3, 2.4,and2.5,the spherical coordinates of the poing X
are (p, 0, 0), then the formulagl3), (17),and(21) assume the form

L Ok . AQ. Ak pn.y0, 0)
k j—n n j—n n\Y
MK = v : (33)
]

= Of- Ax- A YD, (0,0

LK = aal , (34)
J nX:; (_l)nA(j)+n . pJ+n+1

Lo N~On AL AT YR (0.0 a5

i Z (=1 - AK ’ (35)
n=j n

respectively.

DEerFINITION 3.6.  The special cases of the linear operafys, 7w, and7, . defined
by the formulae (33), (34), and (35) will be denoted®yy, 7y, . andZ? , respectively.

Observation 3.3Rotation based translation operators). Inspection of formulae (3
(34), (35) indicates that each of the operatfifs, . 7y, andZ3 can be applied numerically
to an arbitrarypth-order expansion for a cost proportionajtd Thus, a translation operator
can be applied to an arbitrary vector for a cost proportiongfiga the following procedure.
First, the system of coordinates is rotated so that the nawis points to the desired
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translation center. Then, the expansion is translated via one of the formulae (33), (34)
(35). Finally, the translated expansion is rotated back to the original system of coordin:
Since each of the three stages c@3tp°®) operations, the cost of the whole process has al
been reduced t®(p?) operations. Formally, the scheme we have outlined correspond:
the factorizations

Tum = R(Q7Y) 0 T3y, 0 R(Q), (36)
TuL = R(Q7YH o T3 0 R(Q), (37)
TL=REQ Y oTA o R(Q), (38)

whereR(Q) is defined in Section 2.2 arid(2~1) denotes the inverse rotation operator.

3.2. Plane Wave Based Translation Operators

In three-dimensional fast multipole schemes, the operaigr (converting multipole
expansions into local ones) tends to be applied much more frequently then the oper
Twuwm, 7L which shift multipole and local expansions. Ignoring boundary effects, one el
up applyingZy . to the multipole expansion for each box about 189 times when the cha
distribution is uniform. The operatof&y v, 7., on the other hand, are applied roughly
once per box. In the algorithm of this paper, the operdig, 7, . are applied via the order
p® scheme described in the preceding sectify; is applied by means of a much more
complicated procedure involving the plane wave representation introduced in Lemme
of Section 2.3.

The following observation provides an expansion of the form (29) for the potential g
erated by a collection of charges. It is an immediate consequence of Lemma 2.8.

Observation 3.4. Suppose thalN charges of strengthg,, ¢, ..., qy are located at
points X1, Xo, ..., Xy in R® with Cartesian coordinateéx, y1, z1), (X2, Y2, o), . ..,
(XN» YN ZN), respectively. Suppose further that all poig, Xo, ..., Xy are inside a
cubic boxb with unit volume centered at the origin and that (x, y, z) € R® such that
X € Uplist(b). Let ®(X) denote the potential generated by the chatgesp, ..., qy and
let W, be defined by the formula

s(e) Mg
U, (X) = Z Zw(k’ i) - e Mz, ei/\k~(X-COS(aj.k)JrY-Sin(aj,k)), (39)
k=1 j=1
with the coefficientdV (K, j) given by the formula
N
Wk, j) = % ZO“ AT efikk-(xw~COS(wJ,k)+>’|-Sin(ajAk))’ (40)
k21
forallk=1,...,s(¢), j=1,..., M. Then, ifA= Z,N:1|q| |, we have the estimate

|®(X) — W (X)| < Ae. (41)

Observation 3.5. A somewhat involved analysis shows that, under the conditions of t
preceding observatios(s) ~ p, wherep is chosen according to (7) to achieve the sam
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accuracy using a multipole expansion. Likewise, the total number of exponential b
functionsS.p in (39) is of the same order as the total number of multipole momeatts
in (7) in order that the two expansions provide the same precision

Expansions of the form (39) will be referred to egponential expansion¥heir main
utility is that translation takes a particularly simple form.

THEOREM 3.2 (Diagonal translation). Suppose that a functiod, (X) : R®— C is de-
fined by the formulg39), which we view as an expansion centered at the origin fc
X =(X, Y, 2). Thenfor any vector X = (Xo, Yo, Z0) € R3, we have the shifted expansion

S(e) My
U, (X) = Z Z VK, j) - e @20 | ghe((x—xo)-costeji)-+(y=Yo) Sinej)) (42)
k=1 j=1
where
V(K j) = W(K, ) - g% . ghe(ocosejiotyosine), (43)

fork=1...,s(e),j =1,..., My.

DeriNITION 3.7. Formula (43) defines a linear operator mapping the coefficiel
{W(k, j)} to the coefficientgV (k, j)}. This linear operator will be denoted By

The operatoDex, provides a tool for translating expansions of the form (39) at a cost
O(Sxp ~ O(p?) operations. In FMM algorithms, however, it is convenient to be able
use multipole and local expansions. Thus, in order to be able to use the ofsgttinear
operators converting multipole expansions into exponential expansions and exponenti
pansions into local expansions have to be constructed. The following two theorems prc
such operators.

THEOREM3.3. Suppose that N charges of strengthsag, . . ., gn are located inside a
box b of volume 8 centered at the origire is a positive real numbeand p is an integer
such that for any point X Uplist(b) with spherical coordinatesr, 9, ¢), the potential
@ (X) generated by the charges, @, . . ., gy satisfies the inequality

p n Om
OX) =D > Y0, 6)| < e (44)
n=0 m=—n r
Then
s(e) Mg
d(X) — Z Z W, j) - e~ (/d)z | o Oue/d)-(x-codlaj0+y-sin@j0) | (A/d+1)-¢, (45)
k=1 j=1

where(X, y, z) are the Cartesian coordinates of, A = Z,N:l|q| |, and

: _wk/d 2 _aIml | dimeak ° Orr1n n
Wik, j) = - m;p< DRURY: g;‘ﬂ T " (46)

fork=1,...,s(e), j=1,..., My.
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DerFINITION 3.8.  Formula (46) defines a linear operator converting the coeffidieifts
into the coefficient§W(k, j)}. This linear mapping will be denoted I6y; x .

THEOREM 3.4. Suppose that N charges of strengthsag, . .., gy are located inside
a box b of volume Hcentered at the origine is a positive real numberand that for any
point X= (X, Y, z) € Uplist(b), the potentiatb (X) generated by the charges,qp, . . ., qn
satisfies the inequality

s(e) My
d(X) — Z Z Wk, J) . e—(kk/d)Z . ei(}\k/d)'(X‘Cos(aj‘k)"'Y'Sin(aJ,k))
k=1 j=1

< (A/d)-e, (47)

where A= Zl’\‘:ﬂq. |. Then there exists an integer guch that

p n
O(X) — Z Z LM Y™@, ¢) - r"

n=0 m=-n

< (A/d+1) e, (48)

where(r, 6, ¢) are the spherical coordinates of X and

S(e)

i)Imi
tn'= V(n —(ml)?(n—km)l Z( A /d)" ZW(k E gdmeik (49)

forn=0,...,p,m=—n,...,n.

DeriNITION 3.9. Formula (49) defines a linear operator converting the coefficiel
{W(k, j)} into the coefficient§LT"}. This linear mapping will be denoted I6y .

Remark 3.6. Itis easy to see that (46) can be evaluated numericalll fod, . . ., s(e),
j=1,..., My, at a cost proportional tp3. Indeed, we first calculat@p + 1) - s(¢) quan-
tities Fy m defined by the formula

(/)" (50)

o ¥ (= )'(n +m!
fork=1,...,s(s),m= —p, ..., p. This step require®(s(e) - p?) operations. We then
evaluate the coefficien#/ (k, j) via the formula

wy/d

p
N D (M Ry, (51)

m=—p

Wk, ) =

fork=1,...,s(¢), j=1,..., My, at a cost 0lO(Syp- p) operations. Thus, the total cost
of applying the operatafy x humerically to apth-order multipole expansion is

CostCmx) ~ O(P?s(e) + PSxp) ~ O(P°), (52)

making use of Observation 3.5. A similar argument shows that the opékatazan also
be evaluated numerically for a cost proportionapto

The proofs of Theorems 3.2, 3.3, and 3.4 can be found in [17]. The following observa
follows immediately from Theorems 3.2, 3.3, and 3.4.
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Observation 3.TMultipole to local translation for the uplist). Suppose that are two
boxes such that is in the Uplist ofb. Then the translation operat@f,. which converts
a multipole expansion centered into a local expansion centered incan be applied
via the following procedure. First, convert the multipole expansion centerbdrito an
exponential expansion via the operaffyx; then, use the operatd@pe,, to translate the
resulting exponential expansion to the center of bdinally, convert the latter expansion
into a local expansion in boxvia the operato€x, . In short,

TuL =CxL 0 Dexpo Cmx.- (53)

Observation 3.§Multipole to local translation: general case). The decomposition (5
of the operatof7y, is valid only when boxc is in the Uplist of boxb. When boxc is not
in the Uplist of boxb, the operatoffy,. can easily be applied by first rotating the system c
coordinates, so that in the new coordinate systemghies in the Uplist of bosb, applying
the operatofZy; via (53) to the rotated expansion, and finally rotating back to the origir
system of coordinates. Formally, this corresponds to the factorization

Tyl = R(Q_l) oCxL o Dexpo Cumx o R(Q). (54)

The rotation operatorR(€2) are described in Section 2.2.

Remark 3.9. As mentioned earlier, application of the translation operafgs is a
dominant part of FMM algorithms, occurring up to 189 times per box. Naive applicati
of these operators results in a cost of roughly 189 operations per box, which is pro-
hibitively expensive in most cases. Fast rotation-based schemes [9, 34, 17] use Obsen
3.3 to reduce the cost to roughly 18®. p® operations per box; the resulting FMM scheme
are fairly efficient in low-precision applications. Theorems 3.2, 3.3, and 3.4 of this sub:s
tion can be used to reduce the cost of application of the operatardo approximately
20- p® + 189. p? operations per box. Indeed, in order to account for the interaction of b
b with its Uplist boxes, we use the operatyx of Theorem 3.3 to conveli's multipole
expansion into an exponential one for a cost proportiongtdVe then use the operator
Dexp of Theorem 3.2 to translate the resulting exponential expansion to each of the b
in Uplist(b), for a cost proportional t (Uplist(b)) - p>. Subsequently, we convert the ac-
cumulated exponential expansion for each box into a local one via the opésataf
Theorem 3.4, for a cost proportional pd. This procedure is illustrated in Fig. 3. The anal
ogous process must, of course, be repeated for the Downlist, Northlist, Southlist, Eas
and Westlist. For the Northlist, Southlist, Eastlist, and Westlist (but not for the Downli
there is an additional cost proportional te @ operations per box to rotate the coordinat
system, as described in Observation 3.8. The total cost for each of the six interaction
is summarized in the following

Cos{(Uplist) ~ 2 p3 + N(Uplist(b)) - p?,
Cost{Downlish ~ 2- p® + N(Downlistb)) - p?,
Cos{(Northlist) ~ 4 - p3 + N(Northlist(b)) - p?, (55)
Cost(Southlist ~ 4 - p* + N(Southlistb)) - p,
Cosl{Eastlisy ~ 4- p* + N(Eastlistb)) - p?,
CosiWestlisj ~ 4- p® + N(Westlistb)) - p?,
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Multipole Local

(o) == (=

Exponential Exponential

FIG. 3. A large number of multipole-to-local translations, each costing?®) operations, are replaced by
a single multipole-to-exponential operator costidgp®) operations, a large number of exponential translation
costingO( p?) operations, and a single exponential-to-local operator co€ifgf) operations.

respectively. Combining (55) with the fact that the maximum total number of boxes in
interaction list is 189, we obtain

Cos(Ty.) ~ 20- p® + 189 p?. (56)

Remark 3.10. The procedure of the preceding section has been further accelerated. |
symmetry considerations can be used to reduce the number of translations per box fror
to 40 without any loss of precision. We refer the reader to [17] for details. Second, while
expansions (5) and (8) are expressed in terms of spherical harmonics, they are beinc
to represent potentials inside or outside of regions that are cubic in shape. Clearly, spht
harmonics are not an optimal basis for this purpose. Special-purpose harmonics have
developed for the representation of potentials in such regions; they have been incorpo
in our implementation and the timings presented in Section 5 below reflect this additic
improvement. The procedure itself is fairly involved and will be reported at a later date [

4. THE ADAPTIVE FMM

Starting with the computational box containing all sources, we build an adaptive ¢
structure recursively. Our strategy follows closely that used in [8] for the two-dimensio
case. If the box under consideration contains no charges, its existence is immediately fc
ten. If it contains fewer thascharges (whergis an appropriately chosen positive integer)
it is not subdivided further and considerekiildless Otherwise, it is considered@arent
boxand subdivided into its eight children. The procedure is then repeated for each of
following. The set of all nonempty boxes at levaes denoted byB,, with By consisting of
the computational box itself.

4.1. Adaptive Lists

In order to describe the adaptive scheme, we will need the following notation.
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DerFINITION 4.1. List 1 of a childless bob, denoted byl 1 (b), is defined to be the set
consisting ob and all childless boxes adjacentiidf b is a parent box, its List 1 is empty.

DEeFINITION 4.2. List 20f a boxb, denoted by »(b), is the set consisting of all children
of the colleagues df's parent that are well separated frdum

DerINITION 4.3. List 3 of a childless bob, denoted by3(b), is the set consisting of
all descendents df’s colleagues that are not adjacentltobut whose parent boxes are
adjacent td. If bis a parent box, its list 3 is empty. Note that any ledr L 3(b) is smaller
thanb and is separated fromby a distance not less than the sideaind not greater than
the side of.

DEFINITION 4.4. List 4 of a boxb, denoted byl 4(b), consists of boxes such that
b € L3(c); in other wordsg € L4(b) if and only if b € L3(c). Note that all boxes it 4(b)
are childless and are larger thian

Figure 4 shows the four lists for a bdxin two dimensions. Of these, List 1 and List 2
have simple analogues in the nonadaptive algorithm of [17]. Specifically, List 1 of so
finest level boxb would consist of its colleagues, whose interactions will be account
for directly. List 2 ofb would consist of boxes that are of the same sizb and are well
separated, i.e., the interaction list of Definition 3.4. Lists 3 and 4 do not have analogue
the nonadaptive scheme.

L2(b) is subdivided further int&Jplist(b), Downlis{b), Northlist(b), Southlis(b), East
list(b), andWestlis{b), by obvious analogy with Definition 3.5.

With each boxb, we also associate fourteen expansions:

e A multipole expansiordy, of the form (5) represents the potential generated |
charges contained inside it is valid in R3\ (L1(b) U L3(b)).

e Alocal expansiony, of the form (8) represents the potential generated by all chare
outsideL 1(b) U L3(b); it is valid inside boxb.

2 2 2 2
f 1
1 1 2 2
2 1 b 1
4
f NNNERN
2 ] 31303131 7
303(3]3
2 —2—t—2—1 2
; I \ .
2 2 2 2
f f f !

FIG. 4. Lists 1-4 for boxb.
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« Sixoutgoing exponential expansiong ywPown yyNorth \ySouth \y/East gngyyWest
of the form (39), representing the potential generated by all charges locétaddhvalid in
Uplist(b), Downlisi(b), Northlist(b), Southlis(b), Eastlis{b), andWestlis{b), respectively.

e Six incoming exponential expansiong R/v,Pown, yNorth '/ South \/East gy West
of the form (39), representing the potential instdgenerated by all charges located ir
Downlist(b), Uplist(b), Southlisfb), Northlist(b), Westlis{b), andEastlis{b), respectively.

ADAPTIVE FMM ALGORITHM.
Initialization

Choose precisior and the order of the multipole expansiopsChoose the maximum
numbers of charges allowed in a childless box. Defigto be the smallest cube containing
all sources (the computational domain).

Build Tree Structure
Step 0

Do for levelsl =0, 1, 2, ...
Do for each boxb € B
If b contains more thaschargeghen
Divide b into eight child boxes. Ignore empty children
and add the nonempty child boxesBg ;.
End if
End do
End do

Comment{Denote the greatest refinement level obtained abovéllbyV and the total
number of boxes created ABOX. Create the four lists for each box.]

Do foreach boxy,i=1,2,...,NBOX

Create listd_1(bj), Lo(bi), La(b), La(by).

Split Lo(by) into Up, Down, North, South East Westlists.
End do

Upward Pass

CommeniDuring the upward pass,gth-order multipole expansion is formed for each bo;
b about its center, representing the potentiaRit\ (L1(b) U L3(b)) due to all
charges im.]

Step 1

Commenf{For each childless bol, form a multipole expansion about its center from al
charges ib.]

Doforeach boxy,i =1,2,...,NBOX
If by is childlessthen
Use Theorem 2.1 to formth-order multipole expansiody, ,
representing the potential m?’\(Ll(b) U L3(b)) due to all charges iby.
End if
End do
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Step 2

Commen{For each parent box, form a multipole expansion about its center by merg
multipole expansions from its children.]

Do for levelsl = NLEV — 1, NLEV —2,...,0
Do for each boxb € B,
If bis a parent boxhen
Use the operatdfyy to merge multipole expansions from
its children into®,.
End if
End do
End do

Downward Pass

Commen[During the downward pass,@h-order local expansion is generated for each bc
b about its center, representing the potentiabidue to all charges outside
(L1(b) U Ls(b)) ]

Step 3

Commen{For each boxb, add to its local expansion the contribution due to charges
La(b).]

Do for each boxy;,i =1,2,..., NBOX
Do for each boxc € L4(by)
If the number of charges Ip < p? then

Commen{The number of charges i is small. It is faster to use direct calculation
than to generate the contribution to the local expangigmiue to charges ic;
act accordingly.]

Calculate potential field at each particle poinbjn
directly from charges iic.
Else

Commenf{The number of charges in is large. It is faster to generate the contributiol
to the local expansiod, due to charges in than to use direct calculation;
act accordingly.]

Generate a local expansionkats center due to
charges irc, and add toly, .

End if
End do
End do
Step 4
Comment[For each boxb on levell with 1 =2,3,...,NLEV and for each direction

Dir =Up, Down North, South East West create from boxb's multipole
expansion the outgoing exponenti®" in direction Dir, using the operator
Cwx. TranslateMVP' to the center of each baxe Dirlist (b) using Corollary 3.2,
and add the translated expansions to its incoming exponential exparidich
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Doforlevelsl =2, 3,..., NLEV
Do for Dir = Up, Down North, South East West
Do for each boxb € By

Use the operatafy x to convert multipole expansion

®y, into exponentialWP'r.

Do for each boxc € Dirlist (b)
Translate the outgoing exponential expansigfi’" to the center of
box c using the diagonal translation operafey x, and add the
translated expansion to the incoming exponential expangiin

End do

End do

Commenf{For each box on levell, convert the exponential expansiv" into a local
expansion and add it td..]

Do for each boxt € B
Use the operatafy to convert the exponential expansigf’
into a local expansion, and add itdg.
End do
End do
End do

Step 5

Commenf{For each parent bol, shift the center of its local expansion to its children.]
Do foreach boxy;,i =1, 2,..., NBOX
If by is a parent bothen
Use the operatdf, | to shift the local expansiowy, to the centers of its
children, and add the translated expansions to children’s local expansior
End if
End do

Evaluation of Potentials
Step 6

Commeniinclude contribution to potential from local expansion at leaf nodes.]

Do for each boxp;, i =1,2,..., NBOX
If b; is childlessthen
Calculate the potential at each chargéifirom the local expansiowy, .
End if
End do

Step 7

Commeniinclude contribution from direct interactions.]

Do for each boxp;, i =1,2,..., NBOX
If by is childlessthen
Calculate the potential at each chargéin
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directly due to all charges ih;(by).
End if
End do

Step 8
Commen{For each childless bol, evaluate the potential due to all charge$ ytb).]

Do foreach boxp;,i =1, 2,..., NBOX
If by is childlessthen
Do for each boxc € Ls(b;)
If the number of charges m< p? then

Commen{The number of charges inis small. It is faster to use direct calculation thar
to evaluate the multipole expansidn; act accordingly.]

Calculate the potential at each chargésin
directly from charges i.
Else

Commen{The number of charges inis large. It is faster to evaluate the expansian
than to use direct calculation; act accordingly.]

Calculate the potential at each chargdiin
from multipole expansiod,.
End if
End do
End if
End do

Remark 4.1. Step 3 in the above algorithm could be simplified without increasing tl
asymptotic CPU time estimate of the latter. In particular, we could always generate
contribution to the local expansio#, due to charges ir, even when the number of
charges irc is small. However, the actual computation time would increase somewhat
similar observation can be made about Step 8 of the above algorithm.

Remark 4.2. Inthe actual implementation of the adaptive algorithm, we have introduc
several minor modifications, designed primarily to reduce the memory requirements o
scheme. In particular, Steps 3, 4, and 5 of the downward pass have been combin
eliminate some of the intermediate storage.

4.2. Complexity Analysis and Comparison with Tree Codes

The cost of the FMM algorithm of this paper (like the cost of older schemes of this ty
can be separated into two parts. The first part concerns the construction of the data strt
(Step 0); the second part concerns the calculation of the potentials.

If N denotes the total number of particles in the system, the CPU time estimate for
first part isO(N log N) in the general case ar@d(N) for reasonably uniform distributions
of particles, where “bin sorting” can be used instead of the recursive procedure outl
above. The CPU time requirements for the second parQdie) in all cases. In practice,
however, the first part uses a negligible proportion of the total CPU time.

There has been some confusion in the literature concerning computational comple
partly because of an erroneous proofin the original paper [8] addressing the two dimens
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case. A correct proof can be found in [25], under very general assumptions about the
tribution of charges. We omit the detailed analysis of the asymptotic time and stor
estimates for the algorithm of this paper since it does not differ materially from that
[25]. For reasonably uniform distributions, it is easy to see that the asymptotic cost of
algorithm is approximately

N N
27Ns+ 2Np? + 189 p? + 20 P,

wheres is the number of charges per box at the finest level. The first term comes from di
interactions with colleagues, the second comes from forming and evaluating multipole
local expansions at the finest level, and the last two come from multipole-to-local tre
lations, as shown in (56). Using symmetry considerations, it is possible to reduce the fe
189 to 40 (see Remark 3.10 above). Setrgp®?, we see that the work required by the
FMM is of the order

O(Np¥?).

Similarly, the storage costs are of the order

O(I;Ip2> ~ O(Np¥3).

In the adaptive case, precise estimates are more involved, but the reader will note il
numerical examples below that both CPU times and storage requirements are at a max
for the most homogeneous distributions.

A second area where there has been some confusion concerns comparisons of the
with what are generally known as “tree codes” or “clustering codes.” Within the FMM, nc
that one has four options for a source lpand a target box:

1. compute interactions directly,

2. evaluate the multipole expansion foat individual targets irc directly,

3. convert the field due to each sourcehino a local expansion i (which is later
evaluated),

4. convert the multipole expansion imto a local expansion i (which is later
evaluated).

Intree codes, introduced independently ofthe FMM by Barnes and Hut[3], all interacti
are computed either by direct calculation or by evaluation of a multipole expansion f
source box at a well-separated target position (option 2 above). (An earlier scheme by A
[2] is conceptually more like the FMM than like a tree code.) Clustering codes [18] take
dual point of view: interactions are computed either by direct calculation or by evaluatiol
a local expansion for a target box describing the field due to well-separated sources (0
3 above).

A properly implemented FMM, on the other hand, always selects the least expen
option (which is trivial to choose); it is always more efficient than tree/clustering codes.
omitted this decision analysis in our original descriptions of the FMM [15, 16, 29] in orc
to focus on the central result, which is option 4 above. It is this option which reduces
cost toO(N) and which allows the additional acceleration provided by diagonal translat
operators. It is easy to see that options 2 and 3 are desirable only in Steps 3 and 8 |
adaptive scheme, when considering Lists 3 and 4. (The analogues of Steps 3 and 8 he
Stages 5 and 6 in [8]).
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There are a number of other schemes available which do not take specific advanta
the analytic properties of harmonic functions. They are more general, but do not act
the same performance fdt-body interactions (see [7, 13] and the more extensive revie
in [17]).

5. NUMERICAL RESULTS

The algorithm described in Section 4 has been implemented in Fortran 77, and nume
experiments have been carried out for a variety of charge distributions using a Sun U
SPARC workstation with a CPU clock rate of 167 MHz. The results of our experiments
summarized in Tables I-XI1I with all timings given in seconds.

In the first set of our experiments, the charges were distributed randomly but uniformi
the cube £0.5, 0.5] x [—0.5, 0.5] x [—0.5, 0.5]; results are reported in Tables I-Ill. In the
second set, the charges were distributed randomly in the polar @athek on the surface
ofasphere of radius 0.5, centered at the origin. Obviously, such a distribution is concent
at the poles (Fig. 5); results are reported in Tables IV=VI. In the third set, the charges
distributed on the surface of a cylinder with height 1.0 and radius 0.05 (Fig. 6); results
reported in Tables VII-IX. In the final set of experiments, the charges were distributec
a complicated surface shown in Fig. 7. The results for this configuration are reporte
Tables X=XII. In all our experiments, the charge strengths were taken randomly from
interval (—0.5, 0.5).

For each geometry, the numerical tests were performed with three-, six-, and nine-
accuracy. For three-digit accuracy, the maximum number of charges allowed in a chilc
box was set to be 40. Corresponding numbers for six- and nine-digit accuracies are 10
180, respectively. The timings produced by the adaptive FMM algorithm were compe
with those obtained by the direct calculation. Obviously, it was not practical to apply
direct scheme to large-scale ensembles of particles, due to excessive computation |
Thus, the direct algorithm was used to evaluate the potentials at the first 100 elemer
the ensemble, and the resulting CPU time was extrapolated. Similarly, the accuracy c
algorithm was calculated at the first 100 particles via formula (57) below.

Lastly, in Table XlII, we report results of FMM calculation performed with twelve-digi
accuracy. Here, we consider two cases: the case when the potential to be evaluated i
erated by a collection of charges and dipoles and when only the charges are preser
latter configuration being similar to those in our three-, six-, and nine-digit accuracy te:
As expected, the presence of dipoles increases the acceleration by the FMM over the
calculation.

TABLE |
Timing Results for the FMM for 3-digit Accuracy with Charges Uniformly
Distributed in a Cube

N Levels Boxes p Sexp Storage Temm Tor Error
20000 4 2267 10 52 1359822 13.3 233 .9710*
50000 4 4681 10 52 3365896 24.7 1483 2510
200000 5 33749 10 52 24789948 158 24330 .4.40*
500000 5 37449 10 52 28835176 268 138380 .0-10*

1000000 6 48324 10 52 34798506 655 563900 .1-10*

Note Calculations were performed in single precision.
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TABLE Il
Timing Results for the FMM for 6-digit Accuracy with Charges Uniformly
Distributed in a Cube

N Levels Boxes P Sexp Storage Temm Tor Error
20000 3 585 19 258 1057852 15.9 233 151077
50000 4 2065 19 258 3383488 69 1483 821077
200000 4 4681 19 258 8220716 198 24330 .9-407
500000 5 36665 19 258 64326704 586 138380 .4.4077
1000000 5 37449 19 258 66414780 1245 563900 .4-4077

Note Calculations were performed in single precision.

TABLE 11l
Timing Results for the FMM for 9-digit Accuracy with Charges Uniformly
Distributed in a Cube

N

Levels

Boxes

p Sexp Storage Temm Tor Error
20000 3 585 29 670 2012453 34 296 .8210°1°
50000 3 585 29 670 2012453 96 1920 .6110°%°
200000 4 4681 29 670 16479203 385 30800 .6-10°%°
500000 4 4681 29 670 16479203 1219 192600 .2-10°%°

Note Calculations were performed in double precision.

FIG.5. Charges distributed on the surface of a sphere.



ADAPTIVE FMM ALGORITHM 491

TABLE IV
Timing Results for the FMM for 3-digit Accuracy with Charges Distributed
on the Surface of a Sphere

N Levels Boxes p Sexp Storage Temm Tor Error
20000 7 1746 10 52 891080 8.7 233 .2410*
50000 9 4757 10 52 2394568 21.6 1483 .6310*
200000 11 18221 10 52 9126212 97 24330 .0.80*
500000 12 40717 10 52 20413944 224 138380 .4-40*

1000000 13 90139 10 52 45287934 473 563900 .5.-%0*

Note Calculations were performed in single precision.

TABLE V
Timing Results for the FMM for 6-digit Accuracy with Charges Distributed
on the Surface of a Sphere

N Levels Boxes p Sexp Storage

Temm Tor Error
20000 6 624 19 258 1037742 16 233 42107
50000 7 1774 19 258 2774248 40 1483 7207
200000 9 6790 19 258 10365264 183 24330 .3-207°
500000 10 18897 19 258 28580428 529 138380 .3-4077

1000000 11 33289 19 258 50405060 926 563900 .9- 2077

Note Calculations were performed in single precision.

TABLE VI
Timing Results for the FMM for 9-digit Accuracy with Charges Distributed
on the Surface of a Sphere

N Levels Boxes p Sexp Storage Temm Tor Error
20000 5 429 29 670 1422805 33 296 2310
50000 6 1091 29 670 3616209 98 1920 .1810%

200000 8 4342 29 670 14394468 409 30800 .6-20°%
500000 10 9009 29 670 29828865 1038 192600 .2-1071°

Note Calculations were performed in double precision.

TABLE VII
Timing Results for the FMM for 3-digit Accuracy with Charges Distributed
on the Surface of a Cylinder

N Levels Boxes P Sexp Storage Temm Tor Error
20000 6 1963 10 52 1013298 8.2 233 7210
50000 7 4084 10 52 2014394 20.8 1483 .0410*
200000 8 18795 10 52 9056494 93 24330 .1580*
500000 9 31093 10 52 15409424 194 138380 .1-30*

1000000 9 101374 10 52 49326404 457 563900 .9-207*

Note Calculations were performed in single precision.
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TABLE VI

Timing Results for the FMM for 6-digit Accuracy with Charges Distributed
on the Surface of a Cylinder

N Levels Boxes p Sexp Storage Temm Tor Error

20000 5 505 19 258 868700 13.8 233 521077

50000 6 2037 19 258 3180832 39 1483 921077
200000 7 7001 19 258 10582852 143 24330 .6-3077
500000 8 19849 19 258 29654956 508 138380 .0-10°7
1000000 8 29341 19 258 44253336 921 563900 .4-&07

Note Calculations were performed in single precision.

TABLE IX
Timing Results for the FMM for 9-digit Accuracy with Charges Distributed
on the Surface of a Cylinder

N Levels Boxes P Sexp Storage Temm Tor Error
20000 5 505 29 670 1676098 30 296 .8210
50000 6 751 29 670 2478241 86 1920 .1510%

200000 7 2515 29 670 8348058 341 30800 .2-80°%
500000 7 7344 29 670 24250893 795 192600 .4-90°

Note Calculations were performed in double precision.
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FIG. 6. Charges distributed on the surface of a cylinder.
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TABLE X
Timing Results for the FMM for 3-digit Accuracy with Charges

Distributed as in Fig. 7

Error

TFMM TDIR

Storage

Sexp

p

Boxes

Levels

2210
1539 .7210*

243
24730 .430*

6.7
17
60

164

573996
1952046

52

10
10
10

1213
4184
15423

7
8
9
10
10

20880
51900
203280
503775
1007655

52

7204398
21358082
28513092

52

141060 .3-30*

52
52

10

10

45837

568090 .9-20~*

282

60427

Note Calculations were performed in single precision.

TABLE XI
Timing Results for the FMM for 6-digit Accuracy with Charges

Distributed as in Fig. 7

Error

TFMM TDIR

Storage

Sexp

p

Boxes

Levels

243 311077
1539 .8910°®

24730 .2-10°7

17
40

1601028
2165338

258
258

19
19

1038
1403

7
8

20880
51900
203280

149

6697050
22662792

258

19
19
19

4447
15307

9
9
10

141060 .6-2077

323

258

503775
1007655

568090 .0- 2077

67176488 714

258

45784

Note Calculations were performed in single precision.
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FIG. 7. Charges distributed on a complicated object.
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TABLE XlI
Timing Results for the FMM for 9-digit Accuracy with Charges
Distributed as in Fig. 7

N Levels Boxes p Sexp Storage Temm Tor Error
20880 6 574 29 670 1856177 46 309 .6310°%2
51900 7 1191 29 670 3855741 101 2020 .1110°%
203280 8 3883 29 670 12577869 342 32050 .5.-40°%
503775 9 11499 29 670 37263647 896 193900 .0-10%

Note Calculations were performed in double precision.

The tables are organized as follows.

1. The first column lists the number of charges used in the calculation.

2. The second column lists the number of levels used in the multipole hierarchy.

3. The third column lists the order of the multipole expansion used.

4. The fourth column lists the corresponding number of exponential basis functio

5. The fifth column lists the amount of storage used by the adaptive FMM algorith
Inthe three- and six-digit cases, we indicate the number of single precision (RE#AbQrds
used, while in the nine-digit case, we indicate the number of double prec¢iRIBAL*8)
words used.

6. Columns six and seven contain the CPU times required by the adaptive FI
and the direct calculation, respectively. In the three- and six-digit cases, both the F
and the direct calculations were performed in single precision; in the nine-digit case, |
calculations were performed in double precision.

7. Column eight lists the-, norm of the error in the FMM approximation, which is
computed via the formula

SN o) - doo2)
E= (== ' : (57)
( S ()2 )

whered(x;) are potentials obtained by the FMM algorithm abx; ) are potentials com-
puted by direct calculation in double precision.

The following observations can be made from these tables.

1. The application of the FMM to large scale three dimensional problems is witt
practical reach.

TABLE XIlII
Timing Results for the FMM for 12-digit Accuracy with Sources Distributed
on the Surface of a Sphere

N Levels Boxes p Sexp Storage Temm Tor Error
100000 8 1296 40 1292 8720251 379 8400 5.90%
200000 9 2296 40 1292 14864347 718 30800 .4-90°%
4100000 8 1282 40 1292 8635321 648 20133 .1.10°%
4200000 8 2306 40 1292 14925665 1197 80066 .4-20°%4

Note Calculations were performed in double precision. For the first two lines, the sources are charges
only. For the last two lines, the sources include both charges and dipoles.
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2. The actual CPU time required by the adaptive FMM algorithm grows approximat
linearly with the number of particleN.

3. The algorithm breaks even with the direct calculation at aldobut 750 for three-
digit precision,N = 1500 for six-digit precision, antll = 2500 for nine-digit precision.

4. The performance of the algorithm is quite insensitive to the distribution of charg

6. GENERALIZATIONS AND CONCLUSIONS

We have described an adaptive FMM for the Laplace equation based on a new diag
form for translation operators acting on harmonic functions. It is related to the FMM for
high-frequency Helmholtz equation, in the sense that the latter is based on diagonal f
of translation operators for partial wave expansions [11, 30, 31]. While our discussion
focused onthe free-space problem, itis a straightforward matter to impose periodic bour
conditions on the computational domain. The necessary modifications are described ir
for two-dimensional problems and in [4] for the three-dimensional case.

The present scheme admits a number of extensions. The most straightforward ones
the Helmholtz equation at low frequencies and to the Yukawa equation. The correspon
multipole expansions are well known, and appropriate plane wave representations
been derived (see, for example, [20]).

From a more abstract perspective, it is worth noting that the main improvement mac
this paper and in[17] over earlier FMMs is due to the use of one basis for representing th
field due to a collection of sources (spherical harmonics) and a separate basis for trans
information between boxes in the FMM data structure (plane waves). The applicabilit
this approach is not limited to the Laplace and Helmholtz equations. We are currently ir
process of constructing such optimal (or nearly optimal) bases for more general poten
including those that do not satisfy a partial differential equation, but possess certain
stringent analytical properties. A forthcoming paper [12] describes such an algorithm
the square root of the Laplacian in two dimensions; further generalizations will be repo
at a later date.

7. APPENDIX
The three tables in this Appendix (Tables XIV=XVI) contain the nodes and weights

columns 2 and 3) needed for discretization of the outer integral in Lemma 2.8. Colun

TABLE XIV
Nodes, Weights andV? for 3-digit Accuracy

k Node Weight M2

1 0.10934746769000 0.27107502662774 4
2 0.51769741015341 0.52769158843946 8
3 1.13306591611192 0.69151504413879 16
4 1.88135015110740 0.79834400406452 16
5 2.71785409601205 0.87164160121354 24
6 3.61650274907449 0.92643839116924 24
7 4.56271053303821 0.97294622259483 8
8 5.54900885348528 1.02413865844686 4
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TABLE XV

Nodes, Weights andv? for 6-digit Accuracy

k Node Weight M¢
1 0.05599002531749 0.14239483712194
2 0.28485138101968 0.31017671029271
3 0.66535367065853 0.44557516683709
4 1.16667904805296 0.55303383994159
5 1.76443027413431 0.63944903363523
6 2.44029832236380 0.70997911214019
7 3.18032180991515 0.76828253949732
8 3.97371715777193 0.81713201141707
9 4.81216799410634 0.85872191623337
10 5.68932314511487 0.89480789582390
11 6.60040479444377 0.92680189417317
12 7.54190497469911 0.95586282708096
13 8.51136569298099 0.98299145008230
14 9.50723242759128 1.00913395385703
15 10.52874809650967 1.03531774600508
16 11.57587019602884 1.06318427913963
17 12.65078163968520 1.10232109521088
TABLE XVI
Nodes, Weights anavi? for 9-digit Accuracy
k Node Weight M.
1 0.03705701953816 0.09473396337900
2 0.19219683859955 0.21384206006426
3 0.46045971214897 0.32031528543989
4 0.82805130101422 0.41254929390710
5 1.28121229944787 0.49176691815621
6 1.80792019276297 0.55998309037174
7 2.39814728074333 0.61909314036708
8 3.04359012306582 0.67064351982741
9 3.73732742924096 0.71586567032066
10 4.47354768940212 0.75576118553096
11 5.24735518169467 0.79116885492295
12 6.05462948620944 0.82280556212477
13 6.89191648795972 0.85129012269433
14 7.75633860708838 0.87715909928110
15 8.64551915195994 0.90087981520398
16 9.55751929613924 0.92286282936149
17 10.49078760616705 0.94347471535979
18 11.44412262341269 0.96305166489156
19 12.41664955395045 0.98191478773737
20 13.40781311788324 1.00038891281291
21 14.41739038894472 1.01882849188686
22 15.44553016867884 1.03765781507554
23 16.49282861241170 1.05744113465683
24 17.56045648926099 1.07903824697122
25 18.65046484106274 1.10434337868208
26 19.76847686619416 1.14488166506896

16
16
24
32
32
32
48
48
48
48
48
48
48

16
16
16
24
32
32
32
48
48
48
64
64
64
64
72
72
80
80
88
88
88
88
72
32
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contains the number of discretization points needed in the inner integral, which we de
by MZ.
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