
Journal of Computational Physics155,468–498 (1999)

Article ID jcph.1999.6355, available online at http://www.idealibrary.com on

A Fast Adaptive Multipole Algorithm
in Three Dimensions

H. Cheng,∗ L. Greengard,† and V. Rokhlin∗
∗Department of Computer Science, Yale University, New Haven, Connecticut 06520; and†Courant Institute

of Mathematical Sciences, New York University, New York, New York 10012

Received February 2, 1999; revised August 13, 1999

We present an adaptive fast multipole method for the Laplace equation in three
dimensions. It uses both new compression techniques and diagonal forms for trans-
lation operators to achieve high accuracy at a reasonable cost.c© 1999 Academic Press

Key Words:Laplace equation; translation operators; fast multipole method; adap-
tive algorithms.

1. INTRODUCTION

A new version of the fast multipole method (FMM) for the evaluation of potential fields
in three dimensions was introduced in [17]. The scheme evaluates all pairwise interactions
in large ensembles of particles, i.e., expressions of the form

8(X j ) =
n∑

i=1
i 6= j

qi

‖X j − Xi ‖ (1)

for the gravitational or electrostatic potential and

E(X j ) =
n∑

i=1
i 6= j

qi · X j − Xi

‖X j − Xi ‖3 (2)

for the field, whereX1, X2, . . . , Xn are points inR3 andq1,q2, . . . ,qn are a set of (real)
coefficients.

The evaluation of expressions of the form (1) is closely related to a number of important
problems in applied mathematics, physics, chemistry, and biology. These include molecular
dynamics and quantum-mechanical simulations in chemistry, the evolution of large-scale
gravitational systems in astrophysics, capacitance and inductance calculations in electrical
engineering, and incompressible fluid dynamics (see, for example, [1, 3, 6, 26, 27, 32]).
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When certain closely related interactions are considered as well, involving expressions of
the form

8(X j ) =
n∑

i=1
i 6= j

qi · ei ·k·‖X j−Xi ‖

‖X j − Xi ‖ , (3)

the list of applications becomes even more extensive.
Ever since its introduction in the 1980s, the FMM has been capable of producing very

high accuracy for an acceptable cost in two dimensions; in three dimensions, it has been
considerably less efficient, except when the accuracy requirements were low. This situation
changed somewhat with the development of a new version of the FMM in [17], which is
highly efficient over a wide range of accuracies. That paper introduced a rather involved
mathematical apparatus and described the algorithm in its simplest, nonadaptive form.

Needless to say, most charge distributions encountered in applications are highly nonuni-
form, and to be robust, a procedure for the evaluation of sums of the form (1) or (2)
has to be adaptive. In this paper, we introduce such a scheme, applicable to all distribu-
tions of particles that are likely to be encountered in practice. An additional improvement
introduced in this paper is a “compressed” version of the translation operators used by the
FMM procedure, which is the principal reason for the improvement of the timings found in
Section 5 below over those in [17].

The paper is organized as follows. In Section 2, we summarize the mathematical and
numerical facts to be used in subsequent sections. In Section 3, we review the analytical
apparatus to be used in the design of the improved version of the FMM. In Section 4, we
describe the adaptive version of the FMM and make some comparisons with tree codes. In
Section 5, we illustrate the performance of the method with several numerical examples.
Finally, Section 6 discusses several possible generalizations. For a review of FMM-type
methods and a more thorough discussion of the literature, we refer the reader to [17] and
to the recent papers [22, 28].

2. MATHEMATICAL PRELIMINARIES

In this section, we review the analytical tools used in the design of the FMM algorithm.
For a detailed discussion, see [14, 17, 21, 23, 33].

We begin by defining the spherical harmonics of degreen and orderm according to the
formula

Ym
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)! · P

|m|
n (cosθ)eimφ. (4)

Here, the special functionsPm
n are the associated Legendre functions, which can be defined

by Rodrigues’ formula

Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x),

wherePn(x) denotes the Legendre polynomial of degreen.
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THEOREM2.1 (Multipole expansion). Suppose that N charges of strengths q1,q2, . . . ,

qN are located at points X1, X2, . . . , XN with spherical coordinates(ρ1, α1, β1),

(ρ2, α2, β2), . . . , (ρN, αN, βN), respectively. Suppose further that the points X1, X2, . . . ,

XN are located inside a sphere of radius a centered at the origin. Then, for any point
X= (r, θ, φ) ∈ R3 with r >a, the potential8(X),generated by the charges q1,q2, . . . ,qN,

is given by the formula

8(X) =
∞∑

n=0

n∑
m=−n

Mm
n

r n+1
· Ym

n (θ, φ), (5)

where

Mm
n =

N∑
i=1

qi · ρn
i · Y−m

n (αi , βi ). (6)

Furthermore, for any p≥ 1,∣∣∣∣∣8(X)−
p∑

n=0

n∑
m=−n

Mm
n

r n+1
· Ym

n (θ, φ)

∣∣∣∣∣ ≤
(∑N

i=1 |qi |
r − a

)(
a

r

)p+1

. (7)

The preceding theorem describes an efficient representation of the far field due to a
collection of sources. Within the FMM, it is also useful to be able to describe the field
locally when the charges themselves are far away.

THEOREM 2.2 (Local expansion).Suppose that N charges of strengths q1,q2, . . . ,qN

are located at the points X1, X2, . . . , XN in R3 with spherical coordinates(ρ1, α1, β1),

(ρ2, α2, β2), . . . , (ρN, αN, βN), respectively. Suppose further that all the points X1, X2, . . . ,

XN are located outside the sphere Sa of radius a centered at the origin. Then, for any
point X∈ Sa with coordinates(r, θ, φ), the potential8(X) generated by the charges
q1,q2, . . . ,qN is described by the local expansion

8(X) =
∞∑
j=0

j∑
k=− j

Lk
j · Yk

j (θ, φ) · r j , (8)

where

Lk
j =

N∑
l=1

ql ·
Y−k

j (αl , βl )

ρ
j+1
l

. (9)

Furthermore, for any p≥ 1,∣∣∣∣∣8(X)−
p∑

j=0

j∑
k=− j

Lk
j · Yk

j (θ, φ) · r j+1

∣∣∣∣∣ ≤
(∑N

i=1 |qi |
a− r

)(
r

a

)p+1

. (10)

2.1. Translation Operators

The FMM relies on the ability to translate multipole and local expansions. The relevant
translation operators are described in the next three theorems [14, 16].
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THEOREM 2.3 (Translation of a multipole expansion).Suppose that N charges of
strengths q1,q2, . . . ,qN are located inside the sphere D of radius a centered at X0=
(ρ, α, β). Suppose further that for any point X= (r, θ, φ) ∈ R3\D, the potential due to
these charges is given by the multipole expansion

8(X) =
∞∑

n=0

n∑
m=−n

Om
n

r ′n+1 · Ym
n (θ

′, φ′), (11)

where(r ′, θ ′, φ′) are the spherical coordinates of the vector X− X0.
Then, for any point X= (r, θ, φ) outside a sphere D1 of radius(a+ ρ) centered at the

origin,

8(X) =
∞∑
j=0

j∑
k=− j

Mk
j

r j+1
· Yk

j (θ, φ), (12)

where

Mk
j =

j∑
n=0

n∑
m=−n

Ok−m
j−n · i |k|−|m|−|k−m| · Am

n · Ak−m
j−n · ρn · Y−m

n (α, β)

Ak
j

, (13)

with Am
n defined by the formula

Am
n =

(−1)n√
(n−m)! · (n+m)!

. (14)

Furthermore, for any p≥ 1,∣∣∣∣∣8(X)−
p∑

j=0

j∑
k=− j

Mk
j

r j+1
· Yk

j (θ, φ)

∣∣∣∣∣ ≤
( ∑N

i=1 |qi |
r − (a+ ρ)

)(
a+ ρ

r

)p+1

. (15)

DEFINITION 2.1. Formula (13) defines a linear operator converting the multipole expan-
sion coefficients{Ok

j } into the multipole expansion coefficients{Mk
j }. This linear mapping

will be denoted byTM M .

THEOREM2.4 (Conversion of a multipole expansion to a local expansion).Suppose that
N charges of strengths q1,q2, . . . ,qN are located inside the sphere DX0 of radius a centered
at the point X0= (ρ, α, β), and thatρ > (c+ 1)a for some c> 1. Then the corresponding
multipole expansion(11) converges inside the sphere D0 of radius a centered at the origin.
Furthermore, for any point X∈ D0 with coordinates(r, θ, φ), the potential due to the
charges q1,q2, . . . ,qN is described by the local expansion

8(X) =
∞∑
j=0

j∑
k=− j

Lk
j · Yk

j (θ, φ) · r j , (16)

where

Lk
j =

∞∑
n=0

n∑
m=−n

Om
n · i |k−m|−|k|−|m| · Am

n · Ak
j · Ym−k

j+n (α, β)

(−1)n Am−k
j+n · ρ j+n+1

, (17)
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with Am
n defined by(14). Furthermore, for any p≥ 1,∣∣∣∣∣8(X)−

p∑
j=0

j∑
k=− j

Lk
j · Yk

j (θ, φ) · r j+1

∣∣∣∣∣ ≤
(∑N

i=1 |qi |
ca− a

)(
1

c

)p+1

. (18)

DEFINITION 2.2. Formula (17) defines a linear operator converting the multipole expan-
sion coefficients{Ok

j } into the local expansion coefficients{Lk
j }. This linear mapping will

be denoted byTM L .

THEOREM 2.5 (Translation of a local expansion).Suppose that X0, X are a pair of
points inR3 with spherical coordinates(ρ, α, β), (r, θ, φ), respectively, and (r ′, θ ′, φ′)
are the spherical coordinates of the vector X− X0 and p is a natural number. Let X0 be
the center of a pth-order local expansion with p finite; its expression at the point X is given
by the formula

8(X) =
p∑

n=0

n∑
m=−n

Om
n · Ym

n (θ
′, φ′) · r ′n. (19)

Then

8(X) =
p∑

j=0

j∑
k=− j

Lk
j · Yk

j (θ, φ) · r j , (20)

everywhere inR3, with

Lk
j =

p∑
n= j

n∑
m=−n

Om
n · i |m|−|m−k|−|k| · Am−k

n− j · Ak
j · Ym−k

n− j (α, β) · ρn− j

(−1)n+ j · Am
n

, (21)

and Am
n are defined by(14).

DEFINITION 2.3. Formula (21) defines a linear operator converting the local expansion
coefficients{Om

n } into the local expansion coefficients{Lm
n }. This linear mapping will be

denoted byTLL .

Remark 2.1. The matrices representing the linear operatorsTM M , TM L , andTLL are
dense, so that applying them to truncated expansions withO(p2) coefficients costsO(p4)

operations. This is one of the principal reasons for the relatively high CPU time require-
ments of most existing FMM implementations in three dimensions. Section 3 of this paper
provides tools for the rapid application of the operatorsTM M , TM L , TLL to arbitrary vectors,
improving the efficiency of FMM algorithms significantly.

2.2. Rotation Operators

In this subsection, we introduce operators which transform multipole and local expansions
under rotations of the coordinate system. These operators will play a role in Section 3. The
basic results are contained in the next two theorems, whose proofs can be found in [5],
together with formulae for the evaluation of the coefficientsRm,m′

n in (22), (23).
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THEOREM2.6 (Rotation of multipole expansions).Suppose that(e1, e2, e3)are the three
standard orthonormal basis vectors inR3, given by the formulae

e1 = (1, 0, 0),
e2 = (0, 1, 0),
e3 = (0, 0, 1),

and(ω1, ω2, ω3) are three other orthonormal vectors inR3, forming another basis.
Suppose further that a harmonic function8 : R3\{0} 7→ R is defined by the formula

8(X) =
p∑

n=0

n∑
m=−n

Mm
n

r n+1
· Ym

n (θ, φ),

with (r, θ, φ) the spherical coordinates of the point X∈ R3 associated with the basis
(e1, e2, e3). Then, there exist coefficients Rm,m

′
n with n= 0, 1, . . . , p,m= −n, . . . ,n,m′ =

−n, . . . ,n, such that for any X∈ R3,

8(X) =
p∑

n=0

n∑
m′=−n

M̃
m′

n

r n+1
· Ym′

n (θ
′, φ′),

where(r, θ ′, φ′) are spherical coordinates of X in the system of coordinates associated with
the basis(ω1, ω2, ω3), and

M̃
m′

n =
n∑

m=−n

Rm,m′
n · Mm

n , (22)

for all n = 0, 1, . . . , p,m′ = −n, . . . ,n.

THEOREM 2.7 (Rotation of local expansions).Under the conditions of Theorem2.6,
suppose that a harmonic function8 : R3 7→ R is defined by the formula

8(X) =
p∑

n=0

n∑
m=−n

Lm
n · r n+1 · Ym

n (θ, φ),

where(r, θ, φ) are the spherical coordinates of the point X∈ R3 associated with the basis
(e1, e2, e3). Then for any X∈ R3,

8(X) =
p∑

n=0

n∑
m′=−n

L̃
m′

n · r n+1 · Ym′
n (θ

′, φ′),

where(r, θ ′, φ′) are spherical coordinates of X in the system of coordinates associated with
the basis(ω1, ω2, ω3), and

L̃
m′

n =
n∑

m=−n

Rm,m′
n · Lm

n , (23)

for all n= 0, 1, . . . , p,m′ = − n, . . . ,n. Furthermore, the coefficients Rm,m
′

n are the same
as in(22).
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DEFINITION 2.4. Given a rotationÄ : R3 7→ R3, formulae (22), (23) define operators
converting the multipole coefficients{Mm

n } into the multipole coefficients{M̃m
n } and the

local coefficients{Lm
n } into the local coefficients{L̃m

n }, respectively. These two operators
are identical, and will be denoted byR(Ä).

Remark 2.2. An inspection of formulae (22), (23) shows immediately that the numerical
evaluation of the operatorR(Ä) requiresO(p3) operations.

2.3. Exponential Representation

The new generation of FMMs is based on a combination of multipole expansions and
exponential or “plane wave” expansions. Given a source pointP= (x0, y0, z0) and a target
locationQ= (x, y, z), with z> z0 andr =‖P − Q‖, we begin with the formula [24]

1

r
= 1

2π

∫ ∞
0

e−λ(z−z0)

∫ 2π

0
eiλ((x−x0) cosα+(y−y0) sinα) dα dλ. (24)

We will construct approximations to the integral in (24) via appropriately chosen quadrature
formulae. These quadratures are investigated in detail in [35]; in the following lemma, we
simply state the result for three special cases, corresponding to three-digit, six-digit, and
nine-digit accuracy.

LEMMA 2.8 ([35, 17]). Suppose that X0= (x0, y0, z0), X= (x, y, z) are a pair of points
in R3 and that r=‖X− X0‖. Suppose further that the coordinates(x− x0, y− y0, z− z0)

of the vector X− X0 satisfy the conditions

1≤ z− z0 ≤ 4, 0≤
√
(x − x0)2+ (y− y0)2 ≤ 4

√
2. (25)

Then

∣∣∣∣∣1r −
8∑

k=1

w3
k

M3
k

M3
k∑

j=1

e−λ
3
k·F(z−z0)−i (x−x0)·cosXα3

j,K C−(y−y0)·sinXα3
j,kCG
∣∣∣∣∣ < 1.6× 10−3, (26)

∣∣∣∣∣1r −
17∑

k=1

w6
k

M6
k

M6
k∑

j=1

e−λ
6
k·F(z−z0)−i (x−x0)·cosXα6

j,kC−(y−y0)·sinXα6
j,kCG
∣∣∣∣∣ < 1.3× 10−6, (27)

∣∣∣∣∣1r −
26∑

k=1

w9
k

M9
k

M9
k∑

j=1

e−λ
9
k·F(z−z0)−i (x−x0)·cosXα9

j,kC−(y−y0)·sinXα9
j,kCG
∣∣∣∣∣ < 1.1× 10−9, (28)

whereα3
j,k = 2π j/M3

k , α
6
j,k = 2π j/M6

k , α
9
j,k = 2π j/M9

k . The weights{w3
l , l = 1, . . . ,8},

{w6
l , l = 1, . . . ,17}, {w9

l , l = 1, . . . ,26}, the nodes{λ3
l , l = 1, . . . ,8}, {λ6

l , l = 1, . . . ,17},
{λ9

l , l = 1, . . . ,26}, and the integer arrays{M3
k , k= 1, . . . ,8}, {M6

k , k= 1, . . . ,17},
{M9

k , k= 1, . . . ,26} are given in Tables14, 15, 16of the Appendix, respectively.

Remark 2.3. The conditions (25) in the preceding Lemma appear to be rather special.
They are, however, related to the geometric refinement of space introduced by the FMM
and their use will become clear in the next section.



ADAPTIVE FMM ALGORITHM 475

Remark 2.4. When the desired precision is clear from the context, we will simplify the
notation used in Lemma 2.8, writing each of the expressions (26), (27), (28) in the form∣∣∣∣∣1r −

s(ε)∑
k=1

wk

Mk

Mk∑
j=1

e−λk·(z−z0) · eiλk·[(x−x0)·cos(α j,k+(y−y0)·sin(α j,k)]

∣∣∣∣∣ < ε, (29)

where the integerss(ε) and the triplets{Mk, wk, λk| k= 1, . . . , s(ε)} all depend onε, and
α j,k= 2π j/Mk. The total number of exponential basis functions used in (29) will be denoted
by

Sexp=
s(ε)∑
k=1

Mk. (30)

3. DATA STRUCTURES AND FAST TRANSLATION OPERATORS

In order to develop a fast algorithm, we first define the computational domain to be the
smallest cube inR3 containing all sources. We then build a hierarchy of boxes, refining
the computational domain into smaller and smaller regions. At refinement level 0, we have
a single box corresponding to the entire computational domain. Refinement levell + 1 is
obtained recursively from levell by the subdivision of each box into eight cubic boxes of
equal size. In the nonadaptive case, this recursive process is halted after roughly log8 N
levels, whereN is the total number of sources under consideration.

DEFINITION 3.1. A boxc is said to be achild of box b, if box c is obtained by a single
subdivision of boxb. Box b is said to be theparentof boxc.

DEFINITION 3.2. Two boxes are said to becolleaguesif they are at the same refinement
level and share a boundary point. (A box is considered to be a colleague of itself.) The set
of colleagues of a boxb will be denoted byColl(b).

DEFINITION 3.3. Two boxes are said to bewell separatedif they are at the same refine-
ment level and are not colleagues.

DEFINITION 3.4. With each boxb is associated aninteraction list, consisting of the
children of the colleagues ofb’s parent which are well separated from boxb (Fig. 1).

Note that a box can have up to 27 colleagues and that its interaction list contains up to
189 boxes. Figure 1 depicts the colleagues and interaction list of a box in a two-dimensional
setting.

The interaction list for each box will be further subdivided into six lists, associated with
the six coordinate directions (+z,−z,+y,−y,+x,−x) in the three dimensional coordinate
system. We will refer to the+z-direction as up, the−z-direction as down, the+y-direction
as north, the−y-direction as south, the+x-direction as east, and the−x-direction as west.

DEFINITION 3.5 (Directional lists).
TheUplist for a boxb consists of those elements of the interaction list which lie above

b and are separated by at least one box in the+z-direction (Fig. 2).
TheDownlistfor a boxb consists of those elements of the interaction list which lie below

b and are separated by at least one box in the−z-direction.



476 CHENG, GREENGARD, AND ROKHLIN

FIG. 1. The colleagues of a (two-dimensional) boxb are darkly shaded, while its interaction list is indicated
in white. In three dimensions, a boxb has up to 27 colleagues and its interaction list contains up to 189 boxes.

TheNorthlist for a boxb consists of those elements of the interaction list which lie north
of b, are separated by at least one box in the+y-direction, and are not contained in the Up
or Down lists.

TheSouthlistfor a boxb consists of those elements of the interaction list which lie south
of b, are separated by at least one box in the−y-direction, and are not contained in the Up
or Down lists.

TheEastlistfor a boxb consists of those elements of the interaction list which lie east
of b, are separated by at least one box in the+x-direction, and are not contained in the Up,
Down, North, or South lists.

TheWestlistfor a boxb consists of those elements of the interaction list which lie west
of b, are separated by at least one box in the−x-direction, and are not contained in the Up,
Down, North, or South lists.

For any boxb, we will denote the number of elements in its Uplist byN(Uplist(b)), and
adopt a similar convention for each of the remaining five lists.

Remark 3.1. It is easy to verify that the original interaction list is equal to the union of
the Up, Down, North, South, East, and West lists. It is also easy to verify for two boxesb, c

FIG. 2. The Uplist for the boxb (see Definition 3.5).
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that

c ∈ Uplist(b)⇔ b ∈ Downlist(c),

c ∈ Northlist(b)⇔ b ∈ Southlist(c), (31)

c ∈ Eastlist(b)⇔ b ∈Westlist(c).

Furthermore, suppose that two boxesb andc are of unit volume and thatc ∈ Uplist(b).
Then for any pointX0= (x0, y0, z0) ∈ b and any pointX= (x, y, z) ∈ c, the vector
X − X0= (x − x0, y− y0, z− z0) satisfies the inequality

1≤ z− z0 ≤ 4, 0≤
√
(x − x0)2+ (y− y0)2 ≤ 4

√
2. (32)

Note that this is precisely the condition (25) in Lemma 2.8.

Remark 3.2. When there is no danger of confusion, we will useUplist(b) to refer to the
geometrical region defined by the union of all boxes in the Uplist of boxb. This is a slight
abuse of notation, sinceUplist(b) is, strictly speaking, asetof boxes. We will take the same
liberty with Downlist(b), Northlist(b), Southlist(b), Eastlist(b), Westlist(b) andColl(b).

3.1. Rotation Based Translation Operators

In this section, we describe a simple scheme for reducing the cost of applying any of the
three operatorsTM M , TM L , TLL to an arbitrary vector fromO(p4) to O(p3), operations. The
scheme is based on the observation that when a multipole or local expansion is translated
along thez-axis, the cost is reduced fromO(p4) to O(p3) [9, 17, 19, 34]. The following
lemma is obtained immediately from the resulting simplification of formulae (13), (17),
and (21).

LEMMA 3.1. If, in Theorems2.3, 2.4,and2.5,the spherical coordinates of the point X0

are (ρ, 0, 0), then the formulae(13), (17),and(21)assume the form

Mk
j =

j∑
n=0

Ok
j−n · A0

n · Ak
j−n · ρn · Y0

n (0, 0)

Ak
j

, (33)

Lk
j =

∞∑
n=0

Ok
n · Ak

n · Ak
j · Y0

j+n(0, 0)

(−1)n A0
j+n · ρ j+n+1

, (34)

Lk
j =

p∑
n= j

Ok
n · A0

n− j · Ak
j · Y0

n− j (0, 0) · ρn− j

(−1)n+ j · Ak
n

, (35)

respectively.

DEFINITION 3.6. The special cases of the linear operatorsTM M , TM L , andTLL defined
by the formulae (33), (34), and (35) will be denoted byT z

M M , T z
M L , andT z

LL , respectively.

Observation 3.3(Rotation based translation operators). Inspection of formulae (33),
(34), (35) indicates that each of the operatorsT z

M M ,T z
M L , andT z

LL can be applied numerically
to an arbitrarypth-order expansion for a cost proportional top3. Thus, a translation operator
can be applied to an arbitrary vector for a cost proportional top3 via the following procedure.
First, the system of coordinates is rotated so that the newz-axis points to the desired
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translation center. Then, the expansion is translated via one of the formulae (33), (34), and
(35). Finally, the translated expansion is rotated back to the original system of coordinates.
Since each of the three stages costsO(p3) operations, the cost of the whole process has also
been reduced toO(p3) operations. Formally, the scheme we have outlined corresponds to
the factorizations

TM M = R(Ä−1) ◦ T z
M M ◦R(Ä), (36)

TM L = R(Ä−1) ◦ T z
M L ◦R(Ä), (37)

TLL = R(Ä−1) ◦ T z
LL ◦R(Ä), (38)

whereR(Ä) is defined in Section 2.2 andR(Ä−1) denotes the inverse rotation operator.

3.2. Plane Wave Based Translation Operators

In three-dimensional fast multipole schemes, the operatorTM L (converting multipole
expansions into local ones) tends to be applied much more frequently then the operators
TM M , TLL which shift multipole and local expansions. Ignoring boundary effects, one ends
up applyingTM L to the multipole expansion for each box about 189 times when the charge
distribution is uniform. The operatorsTM M , TLL , on the other hand, are applied roughly
once per box. In the algorithm of this paper, the operatorsTM M , TLL are applied via the order
p3 scheme described in the preceding section;TM L is applied by means of a much more
complicated procedure involving the plane wave representation introduced in Lemma 2.8
of Section 2.3.

The following observation provides an expansion of the form (29) for the potential gen-
erated by a collection of charges. It is an immediate consequence of Lemma 2.8.

Observation 3.4. Suppose thatN charges of strengthsq1,q2, . . . ,qN are located at
points X1, X2, . . . , XN in R3 with Cartesian coordinates(x1, y1, z1), (x2, y2, z2), . . . ,

(xN, yN, zN), respectively. Suppose further that all pointsX1, X2, . . . , XN are inside a
cubic boxb with unit volume centered at the origin and thatX= (x, y, z) ∈ R3 such that
X ∈Uplist(b). Let8(X) denote the potential generated by the chargesq1,q2, . . . ,qN and
let9ε be defined by the formula

9ε(X) =
s(ε)∑
k=1

Mk∑
j=1

W(k, j ) · e−λkz · eiλk·(x·cos(α j,k)+y·sin(α j,k)), (39)

with the coefficientsW(k, j ) given by the formula

W(k, j ) = wk

Mk

N∑
l=1

qi · eλkzl · e−iλk·(xl ·cos(α j,k)+yl ·sin(α j,k)), (40)

for all k= 1, . . . , s(ε), j = 1, . . . ,Mk. Then, if A= ∑N
l=1|ql |, we have the estimate

|8(X)−9ε(X)| < Aε. (41)

Observation 3.5. A somewhat involved analysis shows that, under the conditions of the
preceding observation,s(ε)∼ p, wherep is chosen according to (7) to achieve the same
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accuracy using a multipole expansion. Likewise, the total number of exponential basis
functionsSexp in (39) is of the same order as the total number of multipole moments(p2)

in (7) in order that the two expansions provide the same precisionε.

Expansions of the form (39) will be referred to asexponential expansions. Their main
utility is that translation takes a particularly simple form.

THEOREM 3.2 (Diagonal translation).Suppose that a function9ε(X) :R3 7→C is de-
fined by the formula(39), which we view as an expansion centered at the origin for
X= (x, y, z). Then, for any vector X0= (x0, y0, z0) ∈ R3, we have the shifted expansion

9ε(X) =
s(ε)∑
k=1

Mk∑
j=1

V(k, j ) · e−λk(z−z0) · eiλk·((x−x0)·cos(α j,k)+(y−y0)·sin(α j,k)), (42)

where

V(k, j ) = W(k, j ) · e−λkz0 · eiλk·(x0·cos(α j,k)+y0·sin(α j,k)), (43)

for k = 1, . . . , s(ε), j = 1, . . . ,Mk.

DEFINITION 3.7. Formula (43) defines a linear operator mapping the coefficients
{W(k, j )} to the coefficients{V(k, j )}. This linear operator will be denoted byDexp.

The operatorDexp provides a tool for translating expansions of the form (39) at a cost of
O(Sexp)∼O(p2) operations. In FMM algorithms, however, it is convenient to be able to
use multipole and local expansions. Thus, in order to be able to use the operatorDexp, linear
operators converting multipole expansions into exponential expansions and exponential ex-
pansions into local expansions have to be constructed. The following two theorems provide
such operators.

THEOREM3.3. Suppose that N charges of strengths q1,q2, . . . ,qN are located inside a
box b of volume d3 centered at the origin, ε is a positive real number, and p is an integer
such that for any point X∈Uplist(b) with spherical coordinates(r, θ, φ), the potential
8(X) generated by the charges q1,q2, . . . ,qN satisfies the inequality∣∣∣∣∣8(X)−

p∑
n=0

n∑
m=−n

Om
n

r n+1
· Ym

n (θ, φ)

∣∣∣∣∣ < ε. (44)

Then∣∣∣∣∣8(X)−
s(ε)∑
k=1

Mk∑
j=1

W(k, j ) · e−(λk/d)·z · ei (λk/d)·(x·cos(α j,k)+y·sin(α j,k))

∣∣∣∣∣ < (A/d + 1) · ε, (45)

where(x, y, z) are the Cartesian coordinates of X, A= ∑N
l=1|ql |, and

W(k, j ) = wk/d

Mk

p∑
m=−p

(−i )|m| · eim·α j,k

p∑
n=|m|

Om
n√

(n−m)!(n+m)!
(λk/d)

n, (46)

for k= 1, . . . , s(ε), j = 1, . . . ,Mk.
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DEFINITION 3.8. Formula (46) defines a linear operator converting the coefficients{Om
n }

into the coefficients{W(k, j )}. This linear mapping will be denoted byCM X.

THEOREM 3.4. Suppose that N charges of strengths q1,q2, . . . ,qN are located inside
a box b of volume d3 centered at the origin, ε is a positive real number, and that for any
point X= (x, y, z)∈Uplist(b), the potential8(X) generated by the charges q1,q2, . . . ,qN

satisfies the inequality∣∣∣∣∣8(X)−
s(ε)∑
k=1

Mk∑
j=1

W(k, j ) · e−(λk/d)·z · ei (λk/d)·(x·cos(α j,k)+y·sin(α j,k))

∣∣∣∣∣ < (A/d) · ε, (47)

where A= ∑N
l=1|ql |. Then there exists an integer p, such that∣∣∣∣∣8(X)−

p∑
n=0

n∑
m=−n

Lm
n · Ym

n (θ, φ) · r n

∣∣∣∣∣ < (A/d + 1) · ε, (48)

where(r, θ, φ) are the spherical coordinates of X and

Lm
n =

(−i )|m|√
(n−m)!(n+m)!

s(ε)∑
k=1

(−λk/d)
n

Mk∑
j=1

W(k, j ) · eim·α j,k , (49)

for n= 0, . . . , p,m= −n, . . . ,n.

DEFINITION 3.9. Formula (49) defines a linear operator converting the coefficients
{W(k, j )} into the coefficients{Lm

n }. This linear mapping will be denoted byCX L.

Remark 3.6. It is easy to see that (46) can be evaluated numerically fork= 1, . . . , s(ε),
j = 1, . . . ,Mk, at a cost proportional top3. Indeed, we first calculate(2p+ 1) · s(ε) quan-
tities Fk,m defined by the formula

Fk,m =
p∑

n=|m|

Om
n√

(n−m)!(n+m)!
(λk/d)

n, (50)

for k= 1, . . . , s(ε),m = −p, . . . , p. This step requiresO(s(ε) · p2) operations. We then
evaluate the coefficientsW(k, j ) via the formula

W(k, j ) = wk/d

Mk

p∑
m=−p

(−i )|m| · eim·α j,k · Fk,m, (51)

for k= 1, . . . , s(ε), j = 1, . . . ,Mk, at a cost ofO(Sexp · p) operations. Thus, the total cost
of applying the operatorCM X numerically to apth-order multipole expansion is

Cost(CM X) ∼ O
(

p2s(ε)+ pSexp
) ∼ O(p3), (52)

making use of Observation 3.5. A similar argument shows that the operatorCX L can also
be evaluated numerically for a cost proportional top3.

The proofs of Theorems 3.2, 3.3, and 3.4 can be found in [17]. The following observation
follows immediately from Theorems 3.2, 3.3, and 3.4.



ADAPTIVE FMM ALGORITHM 481

Observation 3.7(Multipole to local translation for the uplist). Suppose thatb, c are two
boxes such thatc is in the Uplist ofb. Then the translation operatorTM L which converts
a multipole expansion centered inb to a local expansion centered inc can be applied
via the following procedure. First, convert the multipole expansion centered inb into an
exponential expansion via the operatorCM X; then, use the operatorDexp to translate the
resulting exponential expansion to the center of boxc; finally, convert the latter expansion
into a local expansion in boxc via the operatorCX L. In short,

TM L = CX L ◦Dexp◦ CM X. (53)

Observation 3.8(Multipole to local translation: general case). The decomposition (53)
of the operatorTM L is valid only when boxc is in the Uplist of boxb. When boxc is not
in the Uplist of boxb, the operatorTM L can easily be applied by first rotating the system of
coordinates, so that in the new coordinate system, boxc lies in the Uplist of boxb, applying
the operatorTM L via (53) to the rotated expansion, and finally rotating back to the original
system of coordinates. Formally, this corresponds to the factorization

TM L = R(Ä−1) ◦ CX L ◦Dexp◦ CM X ◦R(Ä). (54)

The rotation operatorsR(Ä) are described in Section 2.2.

Remark 3.9. As mentioned earlier, application of the translation operatorsTM L is a
dominant part of FMM algorithms, occurring up to 189 times per box. Naive application
of these operators results in a cost of roughly 189· p4 operations per box, which is pro-
hibitively expensive in most cases. Fast rotation-based schemes [9, 34, 17] use Observation
3.3 to reduce the cost to roughly 189· 3 · p3 operations per box; the resulting FMM schemes
are fairly efficient in low-precision applications. Theorems 3.2, 3.3, and 3.4 of this subsec-
tion can be used to reduce the cost of application of the operatorsTM L to approximately
20· p3+ 189· p2 operations per box. Indeed, in order to account for the interaction of box
b with its Uplist boxes, we use the operatorCM X of Theorem 3.3 to convertb’s multipole
expansion into an exponential one for a cost proportional top3. We then use the operator
Dexp of Theorem 3.2 to translate the resulting exponential expansion to each of the boxes
in Uplist(b), for a cost proportional toN(Uplist(b)) · p2. Subsequently, we convert the ac-
cumulated exponential expansion for each box into a local one via the operatorCX L of
Theorem 3.4, for a cost proportional top3. This procedure is illustrated in Fig. 3. The anal-
ogous process must, of course, be repeated for the Downlist, Northlist, Southlist, Eastlist,
and Westlist. For the Northlist, Southlist, Eastlist, and Westlist (but not for the Downlist),
there is an additional cost proportional to 2· p3 operations per box to rotate the coordinate
system, as described in Observation 3.8. The total cost for each of the six interaction lists
is summarized in the following

Cost(Uplist) ∼ 2 · p3+ N(Uplist(b)) · p2,

Cost(Downlist) ∼ 2 · p3+ N(Downlist(b)) · p2,

Cost(Northlist) ∼ 4 · p3+ N(Northlist(b)) · p2, (55)

Cost(Southlist) ∼ 4 · p3+ N(Southlist(b)) · p2,

Cost(Eastlist) ∼ 4 · p3+ N(Eastlist(b)) · p2,

Cost(Westlist) ∼ 4 · p3+ N(Westlist(b)) · p2,
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FIG. 3. A large number of multipole-to-local translations, each costingO(p3) operations, are replaced by
a single multipole-to-exponential operator costingO(p3) operations, a large number of exponential translations
costingO(p2) operations, and a single exponential-to-local operator costingO(p3) operations.

respectively. Combining (55) with the fact that the maximum total number of boxes in the
interaction list is 189, we obtain

Cost(TM L) ∼ 20 · p3+ 189· p2. (56)

Remark 3.10. The procedure of the preceding section has been further accelerated. First,
symmetry considerations can be used to reduce the number of translations per box from 189
to 40 without any loss of precision. We refer the reader to [17] for details. Second, while the
expansions (5) and (8) are expressed in terms of spherical harmonics, they are being used
to represent potentials inside or outside of regions that are cubic in shape. Clearly, spherical
harmonics are not an optimal basis for this purpose. Special-purpose harmonics have been
developed for the representation of potentials in such regions; they have been incorporated
in our implementation and the timings presented in Section 5 below reflect this additional
improvement. The procedure itself is fairly involved and will be reported at a later date [10].

4. THE ADAPTIVE FMM

Starting with the computational box containing all sources, we build an adaptive data
structure recursively. Our strategy follows closely that used in [8] for the two-dimensional
case. If the box under consideration contains no charges, its existence is immediately forgot-
ten. If it contains fewer thans charges (wheres is an appropriately chosen positive integer),
it is not subdivided further and consideredchildless. Otherwise, it is considered aparent
boxand subdivided into its eight children. The procedure is then repeated for each of the
following. The set of all nonempty boxes at levell is denoted byBl , with B0 consisting of
the computational box itself.

4.1. Adaptive Lists

In order to describe the adaptive scheme, we will need the following notation.
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DEFINITION 4.1. List 1 of a childless boxb, denoted byL1(b), is defined to be the set
consisting ofb and all childless boxes adjacent tob. If b is a parent box, its List 1 is empty.

DEFINITION 4.2. List 2of a boxb, denoted byL2(b), is the set consisting of all children
of the colleagues ofb’s parent that are well separated fromb.

DEFINITION 4.3. List 3 of a childless boxb, denoted byL3(b), is the set consisting of
all descendents ofb’s colleagues that are not adjacent tob, but whose parent boxes are
adjacent tob. If b is a parent box, its list 3 is empty. Note that any boxc in L3(b) is smaller
thanb and is separated fromb by a distance not less than the side ofc and not greater than
the side ofb.

DEFINITION 4.4. List 4 of a box b, denoted byL4(b), consists of boxesc such that
b ∈ L3(c); in other words,c ∈ L4(b) if and only if b ∈ L3(c). Note that all boxes inL4(b)
are childless and are larger thanb.

Figure 4 shows the four lists for a boxb in two dimensions. Of these, List 1 and List 2
have simple analogues in the nonadaptive algorithm of [17]. Specifically, List 1 of some
finest level boxb would consist of its colleagues, whose interactions will be accounted
for directly. List 2 ofb would consist of boxes that are of the same size asb and are well
separated, i.e., the interaction list of Definition 3.4. Lists 3 and 4 do not have analogues in
the nonadaptive scheme.

L2(b) is subdivided further intoUplist(b), Downlist(b), Northlist(b), Southlist(b), East-
list(b), andWestlist(b), by obvious analogy with Definition 3.5.

With each boxb, we also associate fourteen expansions:

• A multipole expansion8b of the form (5) represents the potential generated by
charges contained insideb; it is valid inR3\(L1(b) ∪ L3(b)).
• A local expansion9b of the form (8) represents the potential generated by all charges

outsideL1(b) ∪ L3(b); it is valid inside boxb.

FIG. 4. Lists 1–4 for boxb.
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• Sixoutgoing exponential expansions WUp
b , WDown

b , WNorth
b , WSouth

b , WEast
b , andWWest

b

of the form (39), representing the potential generated by all charges located inb and valid in
Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist(b), andWestlist(b), respectively.
• Six incoming exponential expansions VUp

b VDown
b , VNorth

b , VSouth
b , VEast

b , andVWest
b

of the form (39), representing the potential insideb generated by all charges located in
Downlist(b), Uplist(b), Southlist(b), Northlist(b), Westlist(b), andEastlist(b), respectively.

ADAPTIVE FMM ALGORITHM.

Initialization

Choose precisionε and the order of the multipole expansionsp. Choose the maximum
numbersof charges allowed in a childless box. DefineB0 to be the smallest cube containing
all sources (the computational domain).

Build Tree Structure

Step 0

Do for levelsl = 0, 1, 2, . . .
Do for each boxb∈ Bl

If b contains more thans chargesthen
Divide b into eight child boxes. Ignore empty children
and add the nonempty child boxes toBl+1.

End if
End do

End do

Comment[Denote the greatest refinement level obtained above byNLEV and the total
number of boxes created asNBOX. Create the four lists for each box.]

Do for each boxbi , i = 1, 2, . . . ,NBOX
Create listsL1(bi ), L2(bi ), L3(bi ), L4(bi ).
Split L2(bi ) into Up, Down, North, South, East, Westlists.

End do

Upward Pass

Comment[During the upward pass, apth-order multipole expansion is formed for each box
b about its center, representing the potential inR3\(L1(b) ∪ L3(b)) due to all
charges inb.]

Step 1

Comment[For each childless boxb, form a multipole expansion about its center from all
charges inb.]

Do for each boxbi , i = 1, 2, . . . ,NBOX
If bi is childlessthen

Use Theorem 2.1 to formpth-order multipole expansion8bi ,
representing the potential inR3\(L1(b) ∪ L3(b)) due to all charges inbi .

End if
End do
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Step 2

Comment[For each parent box, form a multipole expansion about its center by merging
multipole expansions from its children.]

Do for levelsl = NLEV − 1,NLEV − 2, . . . ,0
Do for each boxb ∈ Bl

If b is a parent boxthen
Use the operatorTM M to merge multipole expansions from
its children into8b.

End if
End do

End do

Downward Pass

Comment[During the downward pass, apth-order local expansion is generated for each box
b about its center, representing the potential inb due to all charges outside
(L1(b) ∪ L3(b)).]

Step 3

Comment[For each boxb, add to its local expansion the contribution due to charges in
L4(b).]

Do for each boxbi , i = 1, 2, . . . ,NBOX
Do for each boxc ∈ L4(bi )

If the number of charges inbi ≤ p2 then

Comment[The number of charges inbi is small. It is faster to use direct calculation
than to generate the contribution to the local expansion9bi due to charges inc;
act accordingly.]

Calculate potential field at each particle point inbi

directly from charges inc.
Else

Comment[The number of charges inbi is large. It is faster to generate the contribution
to the local expansion9bi due to charges inc than to use direct calculation;
act accordingly.]

Generate a local expansion atbi ’s center due to
charges inc, and add to9bi .

End if
End do

End do

Step 4

Comment[For each boxb on level l with l = 2, 3, . . . ,NLEV and for each direction
Dir =Up, Down, North, South, East, West, create from boxb’s multipole
expansion the outgoing exponentialWDir

b in directionDir , using the operator
CM X. TranslateWDir

b to the center of each boxc∈Dirlist (b) using Corollary 3.2,
and add the translated expansions to its incoming exponential expansionVDir

c .]
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Do for levelsl = 2, 3, . . . ,NLEV
Do for Dir =Up, Down, North, South, East, West

Do for each boxb∈ Bl

Use the operatorCM X to convert multipole expansion
8b into exponentialWDir

b .
Do for each boxc ∈ Dirlist (b)

Translate the outgoing exponential expansionWDir
b to the center of

boxc using the diagonal translation operatorDX X, and add the
translated expansion to the incoming exponential expansionVDir

c .
End do

End do

Comment[For each boxc on levell , convert the exponential expansionVDir
c into a local

expansion and add it to9c.]

Do for each boxc ∈ Bl

Use the operatorCX L to convert the exponential expansionVDir
c

into a local expansion, and add it to9c.
End do

End do
End do

Step 5

Comment[For each parent boxb, shift the center of its local expansion to its children.]

Do for each boxbi , i = 1, 2, . . . ,NBOX
If bi is a parent boxthen

Use the operatorTLL to shift the local expansion9bi to the centers of its
children, and add the translated expansions to children’s local expansions.

End if
End do

Evaluation of Potentials

Step 6

Comment[Include contribution to potential from local expansion at leaf nodes.]

Do for each boxbi , i = 1, 2, . . . ,NBOX
If bi is childlessthen

Calculate the potential at each charge inbi from the local expansion9bi .
End if

End do

Step 7

Comment[Include contribution from direct interactions.]

Do for each boxbi , i = 1, 2, . . . ,NBOX
If bi is childlessthen

Calculate the potential at each charge inbi
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directly due to all charges inL1(bi ).
End if

End do

Step 8

Comment[For each childless boxb, evaluate the potential due to all charges inL3(b).]

Do for each boxbi , i = 1, 2, . . . ,NBOX
If bi is childlessthen

Do for each boxc ∈ L3(bi )

If the number of charges inc ≤ p2 then

Comment[The number of charges inc is small. It is faster to use direct calculation than
to evaluate the multipole expansion8c; act accordingly.]

Calculate the potential at each charge inbi

directly from charges inc.
Else

Comment[The number of charges inc is large. It is faster to evaluate the expansion8c

than to use direct calculation; act accordingly.]

Calculate the potential at each charge inbi

from multipole expansion8c.
End if

End do
End if

End do

Remark 4.1. Step 3 in the above algorithm could be simplified without increasing the
asymptotic CPU time estimate of the latter. In particular, we could always generate the
contribution to the local expansion9b due to charges inc, even when the number of
charges inc is small. However, the actual computation time would increase somewhat. A
similar observation can be made about Step 8 of the above algorithm.

Remark 4.2. In the actual implementation of the adaptive algorithm, we have introduced
several minor modifications, designed primarily to reduce the memory requirements of the
scheme. In particular, Steps 3, 4, and 5 of the downward pass have been combined to
eliminate some of the intermediate storage.

4.2. Complexity Analysis and Comparison with Tree Codes

The cost of the FMM algorithm of this paper (like the cost of older schemes of this type)
can be separated into two parts. The first part concerns the construction of the data structure
(Step 0); the second part concerns the calculation of the potentials.

If N denotes the total number of particles in the system, the CPU time estimate for the
first part isO(N log N) in the general case andO(N) for reasonably uniform distributions
of particles, where “bin sorting” can be used instead of the recursive procedure outlined
above. The CPU time requirements for the second part areO(N) in all cases. In practice,
however, the first part uses a negligible proportion of the total CPU time.

There has been some confusion in the literature concerning computational complexity,
partly because of an erroneous proof in the original paper [8] addressing the two dimensional
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case. A correct proof can be found in [25], under very general assumptions about the dis-
tribution of charges. We omit the detailed analysis of the asymptotic time and storage
estimates for the algorithm of this paper since it does not differ materially from that in
[25]. For reasonably uniform distributions, it is easy to see that the asymptotic cost of the
algorithm is approximately

27Ns+ 2N p2+ 189
N

s
p2+ 20

N

s
p3,

wheres is the number of charges per box at the finest level. The first term comes from direct
interactions with colleagues, the second comes from forming and evaluating multipole and
local expansions at the finest level, and the last two come from multipole-to-local trans-
lations, as shown in (56). Using symmetry considerations, it is possible to reduce the factor
189 to 40 (see Remark 3.10 above). Settings≈ p3/2, we see that the work required by the
FMM is of the order

O
(
N p3/2

)
.

Similarly, the storage costs are of the order

O

(
N

s
p2

)
∼ O

(
N p3/2

)
.

In the adaptive case, precise estimates are more involved, but the reader will note in the
numerical examples below that both CPU times and storage requirements are at a maximum
for the most homogeneous distributions.

A second area where there has been some confusion concerns comparisons of the FMM
with what are generally known as “tree codes” or “clustering codes.” Within the FMM, note
that one has four options for a source boxb and a target boxc:

1. compute interactions directly,
2. evaluate the multipole expansion forb at individual targets inc directly,
3. convert the field due to each source inb to a local expansion inc (which is later

evaluated),
4. convert the multipole expansion inb to a local expansion inc (which is later

evaluated).

In tree codes, introduced independently of the FMM by Barnes and Hut [3], all interactions
are computed either by direct calculation or by evaluation of a multipole expansion for a
source box at a well-separated target position (option 2 above). (An earlier scheme by Appel
[2] is conceptually more like the FMM than like a tree code.) Clustering codes [18] take the
dual point of view: interactions are computed either by direct calculation or by evaluation of
a local expansion for a target box describing the field due to well-separated sources (option
3 above).

A properly implemented FMM, on the other hand, always selects the least expensive
option (which is trivial to choose); it is always more efficient than tree/clustering codes. We
omitted this decision analysis in our original descriptions of the FMM [15, 16, 29] in order
to focus on the central result, which is option 4 above. It is this option which reduces the
cost toO(N) and which allows the additional acceleration provided by diagonal translation
operators. It is easy to see that options 2 and 3 are desirable only in Steps 3 and 8 in the
adaptive scheme, when considering Lists 3 and 4. (The analogues of Steps 3 and 8 here are
Stages 5 and 6 in [8]).
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There are a number of other schemes available which do not take specific advantage of
the analytic properties of harmonic functions. They are more general, but do not achieve
the same performance forN-body interactions (see [7, 13] and the more extensive review
in [17]).

5. NUMERICAL RESULTS

The algorithm described in Section 4 has been implemented in Fortran 77, and numerical
experiments have been carried out for a variety of charge distributions using a Sun Ultra-
SPARC workstation with a CPU clock rate of 167 MHz. The results of our experiments are
summarized in Tables I–XIII with all timings given in seconds.

In the first set of our experiments, the charges were distributed randomly but uniformly in
the cube [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]; results are reported in Tables I–III. In the
second set, the charges were distributed randomly in the polar anglesθ andφ on the surface
of a sphere of radius 0.5, centered at the origin. Obviously, such a distribution is concentrated
at the poles (Fig. 5); results are reported in Tables IV–VI. In the third set, the charges were
distributed on the surface of a cylinder with height 1.0 and radius 0.05 (Fig. 6); results are
reported in Tables VII–IX. In the final set of experiments, the charges were distributed on
a complicated surface shown in Fig. 7. The results for this configuration are reported in
Tables X–XII. In all our experiments, the charge strengths were taken randomly from the
interval(−0.5, 0.5).

For each geometry, the numerical tests were performed with three-, six-, and nine-digit
accuracy. For three-digit accuracy, the maximum number of charges allowed in a childless
box was set to be 40. Corresponding numbers for six- and nine-digit accuracies are 100 and
180, respectively. The timings produced by the adaptive FMM algorithm were compared
with those obtained by the direct calculation. Obviously, it was not practical to apply the
direct scheme to large-scale ensembles of particles, due to excessive computation times.
Thus, the direct algorithm was used to evaluate the potentials at the first 100 elements of
the ensemble, and the resulting CPU time was extrapolated. Similarly, the accuracy of the
algorithm was calculated at the first 100 particles via formula (57) below.

Lastly, in Table XIII, we report results of FMM calculation performed with twelve-digit
accuracy. Here, we consider two cases: the case when the potential to be evaluated is gen-
erated by a collection of charges and dipoles and when only the charges are present (the
latter configuration being similar to those in our three-, six-, and nine-digit accuracy tests).
As expected, the presence of dipoles increases the acceleration by the FMM over the direct
calculation.

TABLE I

Timing Results for the FMM for 3-digit Accuracy with Charges Uniformly

Distributed in a Cube

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 4 2267 10 52 1359822 13.3 233 7.9 · 10−4

50000 4 4681 10 52 3365896 24.7 1483 5.2 · 10−4

200000 5 33749 10 52 24789948 158 24330 8.4 · 10−4

500000 5 37449 10 52 28835176 268 138380 7.0 · 10−4

1000000 6 48324 10 52 34798506 655 563900 7.1 · 10−4

Note. Calculations were performed in single precision.
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TABLE II

Timing Results for the FMM for 6-digit Accuracy with Charges Uniformly

Distributed in a Cube

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 3 585 19 258 1057852 15.9 233 5.1 · 10−7

50000 4 2065 19 258 3383488 69 1483 2.8 · 10−7

200000 4 4681 19 258 8220716 198 24330 4.9 · 10−7

500000 5 36665 19 258 64326704 586 138380 4.4 · 10−7

1000000 5 37449 19 258 66414780 1245 563900 4.4 · 10−7

Note. Calculations were performed in single precision.

TABLE III

Timing Results for the FMM for 9-digit Accuracy with Charges Uniformly

Distributed in a Cube

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 3 585 29 670 2012453 34 296 2.8 · 10−10

50000 3 585 29 670 2012453 96 1920 1.6 · 10−10

200000 4 4681 29 670 16479203 385 30800 1.6 · 10−10

500000 4 4681 29 670 16479203 1219 192600 1.2 · 10−10

Note. Calculations were performed in double precision.

FIG. 5. Charges distributed on the surface of a sphere.
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TABLE IV

Timing Results for the FMM for 3-digit Accuracy with Charges Distributed

on the Surface of a Sphere

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 7 1746 10 52 891080 8.7 233 4.2 · 10−4

50000 9 4757 10 52 2394568 21.6 1483 3.6 · 10−4

200000 11 18221 10 52 9126212 97 24330 8.0 · 10−4

500000 12 40717 10 52 20413944 224 138380 6.4 · 10−4

1000000 13 90139 10 52 45287934 473 563900 5.5 · 10−4

Note. Calculations were performed in single precision.

TABLE V

Timing Results for the FMM for 6-digit Accuracy with Charges Distributed

on the Surface of a Sphere

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 6 624 19 258 1037742 16 233 2.4 · 10−7

50000 7 1774 19 258 2774248 40 1483 2.7 · 10−7

200000 9 6790 19 258 10365264 183 24330 2.3 · 10−7

500000 10 18897 19 258 28580428 529 138380 4.3 · 10−7

1000000 11 33289 19 258 50405060 926 563900 2.9 · 10−7

Note. Calculations were performed in single precision.

TABLE VI

Timing Results for the FMM for 9-digit Accuracy with Charges Distributed

on the Surface of a Sphere

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 5 429 29 670 1422805 33 296 3.2 · 10−11

50000 6 1091 29 670 3616209 98 1920 8.1 · 10−11

200000 8 4342 29 670 14394468 409 30800 7.6 · 10−11

500000 10 9009 29 670 29828865 1038 192600 1.2 · 10−10

Note. Calculations were performed in double precision.

TABLE VII

Timing Results for the FMM for 3-digit Accuracy with Charges Distributed

on the Surface of a Cylinder

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 6 1963 10 52 1013298 8.2 233 2.7 · 10−4

50000 7 4084 10 52 2014394 20.8 1483 4.0 · 10−4

200000 8 18795 10 52 9056494 93 24330 5.1 · 10−4

500000 9 31093 10 52 15409424 194 138380 5.1 · 10−4

1000000 9 101374 10 52 49326404 457 563900 4.9 · 10−4

Note. Calculations were performed in single precision.
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TABLE VIII

Timing Results for the FMM for 6-digit Accuracy with Charges Distributed

on the Surface of a Cylinder

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 5 505 19 258 868700 13.8 233 2.5 · 10−7

50000 6 2037 19 258 3180832 39 1483 2.9 · 10−7

200000 7 7001 19 258 10582852 143 24330 5.6 · 10−7

500000 8 19849 19 258 29654956 508 138380 7.0 · 10−7

1000000 8 29341 19 258 44253336 921 563900 6.4 · 10−7

Note. Calculations were performed in single precision.

TABLE IX

Timing Results for the FMM for 9-digit Accuracy with Charges Distributed

on the Surface of a Cylinder

N Levels Boxes p Sexp Storage TFMM TDIR Error

20000 5 505 29 670 1676098 30 296 2.8 · 10−11

50000 6 751 29 670 2478241 86 1920 5.1 · 10−11

200000 7 2515 29 670 8348058 341 30800 8.2 · 10−11

500000 7 7344 29 670 24250893 795 192600 9.4 · 10−11

Note. Calculations were performed in double precision.

FIG. 6. Charges distributed on the surface of a cylinder.
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TABLE X

Timing Results for the FMM for 3-digit Accuracy with Charges

Distributed as in Fig. 7

N Levels Boxes p Sexp Storage TFMM TDIR Error

20880 7 1213 10 52 573996 6.7 243 2.2 · 10−4

51900 8 4184 10 52 1952046 17 1539 2.7 · 10−4

203280 9 15423 10 52 7204398 60 24730 3.4 · 10−4

503775 10 45837 10 52 21358082 164 141060 3.3 · 10−4

1007655 10 60427 10 52 28513092 282 568090 2.9 · 10−4

Note. Calculations were performed in single precision.

TABLE XI

Timing Results for the FMM for 6-digit Accuracy with Charges

Distributed as in Fig. 7

N Levels Boxes p Sexp Storage TFMM TDIR Error

20880 7 1038 19 258 1601028 17 243 1.3 · 10−7

51900 8 1403 19 258 2165338 40 1539 9.8 · 10−8

203280 9 4447 19 258 6697050 149 24730 1.2 · 10−7

503775 9 15307 19 258 22662792 323 141060 2.6 · 10−7

1007655 10 45784 19 258 67176488 714 568090 2.0 · 10−7

Note. Calculations were performed in single precision.

FIG. 7. Charges distributed on a complicated object.
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TABLE XII

Timing Results for the FMM for 9-digit Accuracy with Charges

Distributed as in Fig. 7

N Levels Boxes p Sexp Storage TFMM TDIR Error

20880 6 574 29 670 1856177 46 309 3.6 · 10−12

51900 7 1191 29 670 3855741 101 2020 1.1 · 10−10

203280 8 3883 29 670 12577869 342 32050 6.5 · 10−12

503775 9 11499 29 670 37263647 896 193900 1.0 · 10−11

Note. Calculations were performed in double precision.

The tables are organized as follows.

1. The first column lists the number of charges used in the calculation.
2. The second column lists the number of levels used in the multipole hierarchy.
3. The third column lists the order of the multipole expansion used.
4. The fourth column lists the corresponding number of exponential basis functions.
5. The fifth column lists the amount of storage used by the adaptive FMM algorithm.

In the three- and six-digit cases, we indicate the number of single precision (REAL∗4) words
used, while in the nine-digit case, we indicate the number of double precision(REAL∗8)
words used.

6. Columns six and seven contain the CPU times required by the adaptive FMM
and the direct calculation, respectively. In the three- and six-digit cases, both the FMM
and the direct calculations were performed in single precision; in the nine-digit case, both
calculations were performed in double precision.

7. Column eight lists theL2 norm of the error in the FMM approximation, which is
computed via the formula

E =
(∑N

i=1|8(xi )− 8̃(xi )|2∑N
i=1|8(xi )|2

)1/2

, (57)

where8̃(xi ) are potentials obtained by the FMM algorithm and8(xi ) are potentials com-
puted by direct calculation in double precision.

The following observations can be made from these tables.

1. The application of the FMM to large scale three dimensional problems is within
practical reach.

TABLE XIII

Timing Results for the FMM for 12-digit Accuracy with Sources Distributed

on the Surface of a Sphere

N Levels Boxes p Sexp Storage TFMM TDIR Error

100000 8 1296 40 1292 8720251 379 8400 8.5 · 10−14

200000 9 2296 40 1292 14864347 718 30800 9.4 · 10−14

d100000 8 1282 40 1292 8635321 648 20133 1.1 · 10−14

d200000 8 2306 40 1292 14925665 1197 80066 2.4 · 10−14

Note. Calculations were performed in double precision. For the first two lines, the sources are charges
only. For the last two lines, the sources include both charges and dipoles.
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2. The actual CPU time required by the adaptive FMM algorithm grows approximately
linearly with the number of particlesN.

3. The algorithm breaks even with the direct calculation at aboutN= 750 for three-
digit precision,N= 1500 for six-digit precision, andN= 2500 for nine-digit precision.

4. The performance of the algorithm is quite insensitive to the distribution of charges.

6. GENERALIZATIONS AND CONCLUSIONS

We have described an adaptive FMM for the Laplace equation based on a new diagonal
form for translation operators acting on harmonic functions. It is related to the FMM for the
high-frequency Helmholtz equation, in the sense that the latter is based on diagonal forms
of translation operators for partial wave expansions [11, 30, 31]. While our discussion has
focused on the free-space problem, it is a straightforward matter to impose periodic boundary
conditions on the computational domain. The necessary modifications are described in [15]
for two-dimensional problems and in [4] for the three-dimensional case.

The present scheme admits a number of extensions. The most straightforward ones are to
the Helmholtz equation at low frequencies and to the Yukawa equation. The corresponding
multipole expansions are well known, and appropriate plane wave representations have
been derived (see, for example, [20]).

From a more abstract perspective, it is worth noting that the main improvement made in
this paper and in [17] over earlier FMMs is due to the use of one basis for representing the far
field due to a collection of sources (spherical harmonics) and a separate basis for translating
information between boxes in the FMM data structure (plane waves). The applicability of
this approach is not limited to the Laplace and Helmholtz equations. We are currently in the
process of constructing such optimal (or nearly optimal) bases for more general potentials,
including those that do not satisfy a partial differential equation, but possess certain less
stringent analytical properties. A forthcoming paper [12] describes such an algorithm for
the square root of the Laplacian in two dimensions; further generalizations will be reported
at a later date.

7. APPENDIX

The three tables in this Appendix (Tables XIV–XVI) contain the nodes and weights (in
columns 2 and 3) needed for discretization of the outer integral in Lemma 2.8. Column 4

TABLE XIV

Nodes, Weights andM3
k for 3-digit Accuracy

k Node Weight M3
k

1 0.10934746769000 0.27107502662774 4
2 0.51769741015341 0.52769158843946 8
3 1.13306591611192 0.69151504413879 16
4 1.88135015110740 0.79834400406452 16
5 2.71785409601205 0.87164160121354 24
6 3.61650274907449 0.92643839116924 24
7 4.56271053303821 0.97294622259483 8
8 5.54900885348528 1.02413865844686 4
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TABLE XV

Nodes, Weights andM 6
k for 6-digit Accuracy

k Node Weight M6
k

1 0.05599002531749 0.14239483712194 8
2 0.28485138101968 0.31017671029271 8
3 0.66535367065853 0.44557516683709 16
4 1.16667904805296 0.55303383994159 16
5 1.76443027413431 0.63944903363523 24
6 2.44029832236380 0.70997911214019 32
7 3.18032180991515 0.76828253949732 32
8 3.97371715777193 0.81713201141707 32
9 4.81216799410634 0.85872191623337 48

10 5.68932314511487 0.89480789582390 48
11 6.60040479444377 0.92680189417317 48
12 7.54190497469911 0.95586282708096 48
13 8.51136569298099 0.98299145008230 48
14 9.50723242759128 1.00913395385703 48
15 10.52874809650967 1.03531774600508 48
16 11.57587019602884 1.06318427913963 8
17 12.65078163968520 1.10232109521088 4

TABLE XVI

Nodes, Weights andM 9
k for 9-digit Accuracy

k Node Weight M9
k

1 0.03705701953816 0.09473396337900 8
2 0.19219683859955 0.21384206006426 16
3 0.46045971214897 0.32031528543989 16
4 0.82805130101422 0.41254929390710 16
5 1.28121229944787 0.49176691815621 24
6 1.80792019276297 0.55998309037174 32
7 2.39814728074333 0.61909314036708 32
8 3.04359012306582 0.67064351982741 32
9 3.73732742924096 0.71586567032066 48

10 4.47354768940212 0.75576118553096 48
11 5.24735518169467 0.79116885492295 48
12 6.05462948620944 0.82280556212477 64
13 6.89191648795972 0.85129012269433 64
14 7.75633860708838 0.87715909928110 64
15 8.64551915195994 0.90087981520398 64
16 9.55751929613924 0.92286282936149 72
17 10.49078760616705 0.94347471535979 72
18 11.44412262341269 0.96305166489156 80
19 12.41664955395045 0.98191478773737 80
20 13.40781311788324 1.00038891281291 88
21 14.41739038894472 1.01882849188686 88
22 15.44553016867884 1.03765781507554 88
23 16.49282861241170 1.05744113465683 88
24 17.56045648926099 1.07903824697122 72
25 18.65046484106274 1.10434337868208 32
26 19.76847686619416 1.14488166506896 4
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contains the number of discretization points needed in the inner integral, which we denote
by Md

k .
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